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1 Introduction

Intelligent tutoring systems provide a promising application area for tech-
niques from many subfields of Artificial Intelligence (AI), including knowl-
edge representation, user modelling, rule-based systems, automated diagno-
sis, automated reasoning, adaptive hypermedia, natural language processing
and automated reasoning. But as it turned out this is not just a one way
road, but a give and take in both ways as these educational applications led
to new research problems as well, among others, open student modelling, tu-
torial dialogues, and adaptive hypermedia, see, e.g., [Aleven and Koedinger,
2000; Brusilovski, 1996]. This also applies to automated reasoning as we
shall see in the sequel.

With the widespread availability of the Web, there is the great oppor-
tunity that educational tools developed at one place can be used anywhere
as long as they are encapsulated in Web-applications that are interoperable
and compliant with standard input languages.

While e-learning tools are now widely used in life-long learning applica-
tions such as industrial training courses for specialist knowhow and skills,
these systems slowly but surely enter into school teaching [Koedinger et
al, 1997; Matsuda and vanLehn, 2005], academic teaching, and professional
training as well. Some countries even embrace these new opportunities on
a grand scale. China has currently about 90 million Internet users with a
yearly growth rate of more than 10%. Provided this trend is not disturbed
by external events, China will have more Internet users than the US by 2007
and it has been predicted that within the next ten years, China will have
more officially registered Internet users than the rest of the world [China,
2005]. This is the fastest growing market in the world right now and the
Chinese government intends to use this as a backbone of its next five year
development plan on a grand scale — in particular to develop and educate
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the western parts of the country.
In this article, we shall focus on e-learning for mathematics (and logic)

with special emphasis on its relationship to automated theorem proving
and deduction. As first publications show (e.g. [Melis, 2000]) the field of
automated theorem proving begins to recognise the potential of educational
systems and some research groups of the deduction community have started
to work on deductive components inside of educational systems [Melis et al.,
2001b; Baumgartner and Furbach, 2003]. Others developed theorem prov-
ing systems as interactive tools for education. Historically first was Patrick
Suppes’ use of a deduction system at Stanford [Suppes, 1981] and Peter An-
drews’ TPS system to teach higher order logic at Carnegie Mellon University
[TPS, 2004]. Other recent work includes [Lowe and Duncan, 1997; Buch-
berger et al., 1997; Bornat, ; Sieg and Byrnes, 1998; Sommer et al., 2000;
Melis et al., 2001b]. Most of these systems, however are based primarily on
their developers’ experience and insight rather than on objective cognitive
psychological or pedagogical results and — even more importantly — have
generally not been empirically validated for their educational impact and
cognitive adequacy.

As experienced in other areas before, it is not the development of the
technology per se that has an impact on education but only a technology
responding to the actual needs of the learner. In order to build useful and us-

able educational applications, empirical investigation and observations have
to set the stage for technologies effectively supporting the learner. As we
will see in Section 2, there are a number of cognitive and pedagogical results
that we can rely upon and we should pay attention to.

Most of this article focuses on mathematics (including logic) education.1

It distinguishes the usage of theorem proving/deduction within modules the
student is not using directly and the usage of systems as interactive problem
solving tools.

The paper is organised as follows. In chapter 2 we shall give a brief
account of some relevant (empirical) psychological and pedagogical results.
Then we analyse in chapter 3 how current techniques can or cannot realise
these needs and provide some examples. Finally, we pose some challenges
and propose future work in chapter 4.

2 What e-Learning Systems Need

Learning resembles research and discovery in many ways [White and Shi-
moda, 1999]. However, a student is not like an expert mathematician or a
developer of a theorem proving system. A system that is useful for learning

1However, most needs and some techniques apply more generally to e-learning systems
per se.



e-Learning Logic and Mathematics 3

drastically differs from systems that are valuable for a mathematician or
other expert users.

This statement may sound like a platitude, but it points to a potentially
rich and new research programme. A student’s goals in learning (mathe-
matics) may be just to understand existing problem solutions and proofs
or else to learn how to find a solution or to prove a theorem on her own
(with or without system support). The goal might be to train solution pro-
cedures or to learn how to gather information and search for solutions in
the literature.

Cognitive psychology sheds light on human learning: current paradigms
and instructional theories assume learning requires that a student constructs

knowledge, dependencies and procedural skills in her mind [Piaget, 1977;
Vygotsky, 1978]. As many empirical results show (see e.g. [Mandl et al.,
1997]), this should be promoted inter alia by:

• contextual real life learning experience

• a personalised learning context

• active, explorative learning opportunities

• feedback on the learner’s activities

• coaching and stimulating meta-reasoning

• an appropriate level of abstraction and detailed presentation of the
solution

• an appropriate user interface.

Let us elaborate these aspects in turn:

Context. If a learner can match her learning experience with a real-life
context it will be more likely that she learns more rapidly and that she
can transfer this knowledge better to problem solving in reality [Andriessen
and Sandberg, 1999]. A ‘real-life context’ could be introduced by realistic
visual impressions from video clips, pictures or diagrams or simply by a
verbal description of a concrete situation representing a problem from the
experience of the targeted learner group.

Another relevant feature concerns the complexity of real world problems
and the various phases their solution requires. Such a problem solving cycle
may require very different activities and skills from a pure textbook or aca-
demic problem: recognising the problem in the real life setting, developing
the mathematical model, then mathematical problem solving and possibly
revision and, finally, translating the solution back from the mathematical
result into the real life setting.
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Personalisation. Personalised learning experience is crucial not just for
the motivation but also for efficiency and effectiveness of learning [An-
driessen and Sandberg, 1999]. There are several ways of adapting an e-
learning tool to the student. The most obvious one is to tailor the learning
material (in particular the examples and exercises) to the capabilities of the
student and to her learning goals. Furthermore, a course on statistics for
example should be tailored to the special interest of the student: a student
of physics expects different statistics examples than, say, a chemist or an
electrical engineering student.

Active Learning. One of the most important ingredients of effective learn-
ing is active problem solving and exploration of alternatives and the discov-
ery of faulty steps and assumptions [VanLehn et al., 2001]. In particular
learning from errors and failures is an important ingredient of active learning
and should be maximally exploited.

Feedback. Empirical investigations corroborate that an appropriate feed-
back during problem solving improves subsequent performance [Jacobs,
2001]. An intelligent learning assistant should therefore diagnose mistakes,
adaptively scaffold the individual process of problem solving and generate
appropriate feedback and hints, see e.g., [Narciss, 2001; Tsovaltzi, 2005].

Meta-reasoning. Meta-reasoning plays a crucial role in successful prob-
lem solving [Polya, 1945; Schoenfeld, 1985; Melis and Ullrich, 2003] which
includes planning, monitoring, self-regulation and self-explanation [Chi et

al., 1989]. Take, for example, Polya’s ‘How to Solve It’ [1945]: it has the
form of a ‘how-to manual’, i.e. a formulation of a set of heuristics cast in
the form of brief commands within a frame of the four following problem
solving stages

1. Understand the problem

2. Devise a plan

3. Carry out the plan

4. Look back at the solution.

These stages should be followed and actively monitored by the student, and
exactly how this can be done is the subject of this very influential book. So
far, however, this kind of reasoning is rarely taught, let alone implemented
in current e-learning systems.

Cognitively Adequate Presentation. The presentation of a solution
and in particular, the presentation of proofs have to be appropriately struc-
tured [Catrambone and Holyoak, 1990] and to hide irrelevant details in
order to be comprehensive and transferable.The presentation should exploit
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multiple modalities such as text, formulas, diagrams, but also speech and
animations if appropriate.

User Interface. The user interface of an e-learning tool has to be de-
signed such that the student can focus on the essentials of the particular
learning task, undisturbed much as possible by system peculiarities. An-
derson [Anderson and Pelletier, 1991] claims that the design of the user
interface substantially influences what a student will learn using the LISP
tutor [Anderson et al., 1995] as a case in point. Depending on the user
interface, in particular, depending on the input language, a learner will ei-
ther just learn a particular programming syntax or else be able to focus on
general programming strategies. Moreover, just clicking buttons is unlikely
to stimulate serious learning. This applies to learning mathematics just
as well. Since e-learning tools have to be usable rather than just useful,
a user-centred design of the interface built according to current cognitive
requirements is key.

3 What we Have: ActiveMath

Learning environments have to meet realistic and complex needs, both tech-
nically as well as psychologically. So let us look at the the pedagogical and
technical goals of our research for the ActiveMath system.

Pedagogical Goals

ActiveMath aims at an interactive and exploratory learning process and
assumes the student to be responsible for the actual learning session. There-
fore, the system supports relative freedom for navigating through a course
and the user defines choices. The system supports a dynamic student model
and by default, the student model is scrutable, i.e., inspectable and modi-
fiable. Moreover, dependencies between the mathematical concepts can be
inspected in a dictionary in order to help the student to learn the overall
structure of a domain (e.g., analysis, algebra or number theory).

ActiveMath can adapt a course to the learner’s goals, prerequisites and
learning scenarios. In colleges and universities, the same subject is taught
differently for different groups of users in different contexts, e.g., statistics
has to be taught differently for students of mathematics, for students of
economics, or in medicine. Therefore, the adaptive choice of content to
be presented as well as examples and exercises is pivotal. In addition, an
adaptation of examples and exercises to the student’s actual capabilities
is highly desirable in order to keep the learner in the zone of proximal
development [Vygotsky, 1978] rather than overtax or undertax her.

Moreover, web-based systems can be used in several learning contexts,
e.g., long-distance learning, homework, or teacher-assisted learning. Person-
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alization is required in all of them because even for teacher-assisted learning
in a classroom with, say, 30 students and one teacher, the teacher cannot
really respond to all the individual needs. ActiveMath’s current version
provides adaptive content and adaptive presentation features.

Technical Goals

Building hyper-media content with assured quality is a time-consuming and
costly process, hence the content should be reusable in different contexts.
As most of today’s interactive textbooks consist of a collection of predefined
documents, typically canned HTML pages and multimedia animations, it is
difficult to reuse them in another context. A re-combination of the encoded
learning objects or a new adaptation of the course presentation and content
of the course to other users is impossible most of the time.
ActiveMath’s generic and semantically annotated knowledge representa-
tion supports re-usability and interoperability. In particular, it is compliant
with the emerging mathematical knowledge representation and communica-
tion standards such as Dublin Core, OpenMath, MathML, and LOM.2 Some
of the buzzwords here are metadata, ontological XML, and standardized
content packaging. Such features of the knowledge representation ensure a
longer life cycle even with new and changing technologies in browsers and
other devices.

In order to use the potential power of existing web-based technology e-
learning systems need an open architecture to integrate and connect to new
components including student management systems such as Ilias, Moodle,
Sakay, WebCT as well as assessment tools, collaboration tools, and problem
solving tools.

3.1 Architecture

The architecture of ActiveMath, as sketched in Figure 1, strictly realizes
the principle of separation of (declarative) knowledge from functionalities
as well as the separation of different kinds of knowledge. For instance,
pedagogical knowledge is stored in a pedagogical rule base, the educational
content is stored in MBase, and the knowledge about the user is stored in the
student model. This principle has proved valuable in many AI-applications
and eases modifications as well as configurability and reuse of the system.

ActiveMath has a client-server architecture whose client is a browser
(or several browsers in case of multi-user mode). This architecture serves
not only its openness but also its platform independence, and a browser
such as Netscape, Mozilla, or IE with MathPlayer is sufficient to work with
ActiveMath. The components of ActiveMath have been designed in a

2http://ltsc.ieee.org/wg12/
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Figure 1. Architecture of ActiveMath

modular way in order to guarantee exchangeability and robustness.

The actual flow of control (and data) in the above diagram is as follows:
when the student has chosen her goal concepts and learning scenario, the
session manager sends a request to the course generator. The course gen-
erator is responsible for choosing and arranging the content to be learned.
The course generator contacts the mathematical knowledge base in order to
fetch the identifiers (IDs) of the mathematical concepts that are required
for learning the goal concepts, queries the student model in order to find out
about the student’s prior knowledge and preferences, and uses pedagogical

rules to select, annotate, and arrange the content — including examples
and exercises — in a way that is suitable for this particular learner in this
particular session. The resulting instructional graph of IDs is sent to the
presentation engine which retrieves the actual mathematical content corre-
sponding to the IDs and transforms the XML-data to output-pages which are
then finally presented via the student’s browser.

The course generator and the suggestion mechanism [Melis and Andres,
2004] previously worked with the rule-based system Jess [Friedman-Hill,
1997] that evaluates the (pedagogical) rules in order to decide which par-
ticular adaptation and content to select and which actions to suggest. Jess
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uses the Rete algorithm [Forgy, 1982] for optimization.
External systems such as the computer algebra systems Maple [Maple,

1986] and MuPad [Sorgatz and Hillebrand, 1995] and the proof planner
Multi [Melis and Meier, 2000] communicate with the ActiveMath sys-
tem. They serve as cognitive tools [Lajoie and Derry, 1993] and support
the learner in complex interactive exercises. They also assist in generating
feedback by evaluating the learner’s input. Finally, a diagnosis is passed to
the student model in order to update the student model.

In exercises ActiveMath does not necessarily guide the user strictly
along a predefined expert solution. It only evaluates whether the student’s
input is mathematically equivalent to an admissible subgoal, i.e., maybe it
is irrelevant, but not outside the solution space (see [Buedenbender et al.,
2002]). Moreover, the external systems can support the user with automated
problem solving, i.e., they may take over some parts in the human problem
solving process and thereby help the user to focus on important learning
tasks and to delegate routine tasks.

Actually, the diagnoses of a student’s performance is well known to be
an ‘AI-complete’ problem and hence several context-dependent equivalence
checkings have been implemented so far. Moreover, most tutor systems
encode the possible problem solving steps and the most typical misconcep-
tions into their solution space or into systems that execute them. From
this encoding, the system diagnoses the misconception of a student. This
is, however, infeasible in realistic applications with large solution spaces
as it is in general impossible to represent all potential misconceptions of a
student [VanLehn et al., 2002].

The presentation engine generates personalized web pages based on two
frameworks: Maverick and Velocity. Maverick3 is a minimalist model view
controller (MVC) framework for web publishing using Java and J2EE, focus-
ing solely on MVC logic. It provides a wiring between URLs, Java controller
classes and view templates.

The presentation engine is a reusable component that takes a structure
of OMDocs and transforms them into a presentation output that can be PDF
(print format) or HTML with different maths-presentations such as Unicode
or MathML (screen format) [Ullrich et al., 2004]. Basically, the presentation
pipeline comprises two stages: stage 1 encompasses Fetching, Pre-Processing
and Transformation, while stage 2 consists of Assembly, Personalization and
optional Compilation. Stage 1 deals with individual content fragments or
items, which are written in OMDoc and stored in a knowledge base. Content
items in the knowledge base do not depend on the user who is to view
them, they have unique identifiers and can be handled separately. It is only

3Maverick: http://mav.sourceforge.net/



e-Learning Logic and Mathematics 9

in stage 2 that items are composed to user-specific pages.

3.2 Adaptivity

ActiveMath adapts the course generation and presentation to the stu-
dent’s

• technical equipment (customization)

• environment variables, e.g., curriculum, native language, and the field
of study (contextualization) and

• her cognitive and educational needs and preferences such as learning
goals, and prerequisite knowledge (personalization).

As for personalization, individual preferences (such as the style of presen-
tation), goal-competencies, and mastery-level are taken into account by the
course generator. The goal-competencies are characterized by concepts that
are to be learned and by the competency-level to be achieved: knowledge
(k), comprehension (c), or application (a).

The learner can initialize her student model by self-assessment of her
mastery-level of concepts and choose her learning goals and learning sce-
nario, for instance, the preparation for an exam or learning from scratch for
k-competency level. The course generator processes this information and
updates the student model and generates pages/sessions as depicted in the
sreenshots of Figures 2 and 3. These two screenshots differ in the underlying
scenarios as the captions indicate.

The adaptation to the capabilities of the learner is carried out by the
course generator and later, during the actual session, by the suggestion
mechanism. The course generator checks whether the mastery-level of pre-
requisite concepts is sufficient for the goal competency. If not, it presents
the missing concepts and/or explanations, examples and exercises for these
concepts to the learner when a new session is requested. The suggestion
mechanism acts dynamically in response to the student’s activities. Essen-
tially, this mechanism works with two blackboards, a diagnosis blackboard
and a suggestion blackboard on which particular knowledge sources operate.

We also investigated special scenarios that support a student’s meta-
cognitive activities, such as those proposed in Polya’s book [1945]. A Polya-
scenario structures the solution space with headlines such as “understand
the problem”, “make a plan”, “execute the plan”, and “look back at the
solution”. It augments and structures exercises with additional prompts
similar to the above headlines [Melis and Ullrich, 2003].
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Figure 2. A screen shot of an ActiveMath session for exam preparation

3.3 The Student Model

User modeling has been a research area in AI for some time. It actually
started by developing techniques for student modeling and still continues
with the investigation of representational issues as well as diagnostic and
updating techniques.

As ActiveMath’s presentation is user-adaptive, we need to incorporate
persistent information about the student as well as a representation of the
student’s learning progress. Therefore, static (wrt. the current session)
properties such as field, scenario, goal concepts, and preferences as well as
dynamic properties such as the mastery values for concepts and the student’s
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Figure 3. k-level session of ActiveMath

actual behaviour, are stored in the current student model.
The profile is initialized with the learner’s entries entered into Active-

Math’s registration page which holds the preferences (static), scenario,
goals (static for the current session), and self-assessment values for knowl-
edge, comprehension, and application of concepts (dynamic).

The history component stores the information about the learner’s actions.
Its elements contain information such as the IDs of the content of a read
page or the ID of an exercise, the reading time, and the success rate of the
exercise. We also developed a “poor man’s eye-tracker” which allows to
trace the student’s attention and reading time [Ullrich and Melis, 2002].

To represent the concept of mastery, the current (dynamic) profile con-
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tains values for a subset of the competences of Bloom’s mastery taxonomy
[Bloom, 1956]:

• Knowledge (K)

• Comprehension (C)

• Application (A)

Finishing an exercise or going to another page triggers an update of the
student model. Different types of learner actions may exhibit different com-
petencies, hence reading a concept mainly updates ’knowledge’ values, read-
ing examples mainly updates ’comprehension’, and solving exercises mainly
updates ’application’. When the student model receives the notification
that a student has finished reading a page, an evaluator fetches the list of
its items and their types (concept, example, . . .) and delivers an update of
the values of those items. When the learner finishes an exercise, an evalu-
ator delivers an update of the values of the involved concepts that depend
on the difficulty and on the rating of how successful the solution was.

The student model is inspectable and modifiable by the student as shown
in Figure 4. Our experience is that students like to inspect their student
model in order to plan what to learn next.

3.4 Knowledge Representation

As opposed to the purely syntactic representation formats for mathemati-
cal knowledge such as LaTex or HTML, the knowledge representation used by
ActiveMath is the semantic XML-language OMDoc [Kohlhase, 2000] which is
an extension of OpenMath [Caprotti and Cohen, 1998]. OpenMath provides
a collection of OpenMath objects together with a grammar for the repre-
sentation of mathematical objects and sets of standardized symbols (the
content-dictionaries). That is, OpenMath talks about objects rather than
syntax.

OpenMath does not have the means to represent the content of a math-
ematical document nor its structure, whereas OMDoc defines logical units
such as “definition”, “theorem”, and “proof” with semantical annotations.
In addition, the purely mathematical OMDoc representation is augmented by
educational metadata such as the difficulty of a learning object or the type
of an exercise.

This representation has several advantages, among them

• it is human and machine understandable

• the presentation can automatically and dynamically be linked to con-
cepts and learning objects and thus,
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Figure 4. Inspection of the student model (mastery-level)

– concepts can easily be fetched from ActiveMath’s dictionary
when clicking on a concept or formula during the course

– and mathematical objects can in principle be copied and pasted.

For more details on the representation of mathematical knowledge in
ActiveMath, see [Melis et al., 2003].

The web-based ActiveMath system has been under development now
for several years at the CCeL (Competence Centre for e-Learning) of the
DFKI and at the University of Saarland. Its research and development
is supported by several projects of the BMBF (the German Ministry for
Research and Development) and the European Union. A demo (and demo
guide) is available at http://www.activemath.org.

3.5 Automated Reasoning Tools for System Functionalities

Deduction systems have been used as internal modules in learning systems
for user modeling [Kobsa and Pohl, 1995], diagnosis [Hoppe, 1994], and
course generation [Baumgartner and Furbach, 2003; Melis, 2005]. We dis-
cuss the last usage here.



14 Erica Melis and Jörg Siekmann

Personalization In order to present the learning material according to
the user’s needs and abilities, the characteristics of the individual user have
to be stored and updated and personalization actions can then be inferred.

So far, ActiveMath uses relatively simple deductive techniques to infer
the personalization of content and its presentation from the information in
the user model and from pedagogical knowledge in a rule base [Ullrich, 2003].
The course generator of ActiveMath dynamically generates mathematical
courses by

1. retrieving the appropriate content from a knowledge base and

2. by applying pedagogical knowledge that is formalized in rules.

In the second stage, when the content is already assembled from the
collection of concepts the user has to learn in order to meet the learning
goals, the pedagogical rules are applied to select instructional items that
are related to these concepts. They also determine the order of items in
the learning material. The rules have a condition and an action part. The
condition part of a rule specifies the conditions that have to be fulfilled for
the rule to be applicable, the action part specifies the actions to be taken
when the rule is applied. The course generator uses the pedagogical rules in
order to decide: (i) which information should be presented on a page; (ii) in
which order this information should appear on a single page; (iii) how many
exercises and examples should be presented and how difficult they should
be; (iv) whether or not to include exercises and examples that make use of
a particular service system. Since the work with service systems requires
a certain minimal familiarity with these systems, ActiveMath presents
these exercises only, if the capability to use them is confirmed in the user
model. The following are examples of pedagogical rules for two different
types of decisions. The rule

(defrule PatternForExamPrep

(scenario ExamPrep) =>

(assert (definitions assertions methods exercises)))

determines the kind of items and the order in which they will appear on
the course pages. In this example, the learner selected preparation for an
exam (indicated by the fact (scenario ExamPrep)). When this rule fires,
the facts (definition, assertions, methods, exercises) are asserted,
i.e., added to the course. This implies that these items will appear on a page
in the specified order.

In turn, these facts may cause other rules to fire, e.g., those choosing
exercises with an appropriate levels of difficulty:
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(defrule RequireAppropriateExercise

(exercises)

(definition (name ?definition)

(userKnowledge ?user-knowledge))

(test (< ?user-knowledge 0.3))

=>(assert (choose-exercise-for ?definition (0.3 0.5 0.7))))

This rules determines that if exercises should be presented at all (indicated
by (exercises)) and if there exists a definition d, then d’s name is bound
to the variable ?definition and the learner’s knowledge of d is bound
to ?user-knowledge. Then the test is evaluated and its value determines
whether the rule fires or not. The above rule fires, if the learner’s knowledge
is less than 0.3. Then the fact (choose-exercise-for ?definition (0.3

0.5 0.7)) is inserted into the assembled set of items and this triggers the
selection of examples for d with difficulty levels 0.3, 0.5, and 0.7 respectively.

3.6 Automated Deduction Systems as Tools

Several systems have been developed for teaching mathematics, e.g., the
interactive CMU proof tutor [Sieg and Byrnes, 1996], the EPGY theorem
proving environment [Sommer et al., 2000] where Otter [McCune, 1990]

checks the correctness of the student’s input, living Book [Baumgartner and
Furbach, 2003] in which a theorem prover checks the correctness of truth
values and normal forms, and Jape [Aczel et al., 1999]. These systems have
a deductive component, however, since the (deductive) service systems are
fixed and do not adapt to the student, the students have to adapt to the
system.

Adaptation to the Student. It may not always be the best idea to
make only correct suggestions, as the students might then just click on
these suggestions rather than learn anything. So sometimes it is better
to include faulty suggestions. The decision of when it is most appropriate
to present a faulty suggestion, depends on the learning goal, the learning
context, the learning history, and the competency of the student, as well as
on the pedagogical strategy.

The interaction console of the proof planner Multi which is used as a
mathematical service in ActiveMath, offers adapted suggestions by config-
urable suggestion agents [Pollet et al., 2003]. A configuration is a set of
agents and an agent encodes pedagogical knowledge. For instance, in order
to understand why a method is applicable it may be useful for a student
to encounter a situation in which a method is not. Sometimes alternative
proof strategies should be learned, where these strategies represent different
ways to prove a theorem. For instance, proofs of properties of residue classes
in group theory can be tackled by three different proof planning strategies.
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The first strategy tries to apply some related theorems, the second strategy
reduces the problem to an equation for which a general solution must be
found, and the third strategy introduces a case split over the (finitely many)
elements of a residue class. The decision for the suggestion of a strategy de-
pends on the knowledge of a student (whether she knows the theorems that
are the prerequisites for the first strategy) but it could also be the result
of her performance in previous exercises in which, e.g., the other strategies
have been trained already.

Active Explorative Learning. An interesting application of proof plan-
ning in a system that teaches how to prove theorems is as a ’domain rea-
soner’. As there can be more ways to prove a given theorem than a tutoring
system anticipates and stores, a student may come up with a proof idea
which does not match any expert solution the system stored. Now, an in-
teractive proof planner is a more (albeit not always) helpful assistant under
these circumstances as it will just generate a new proof using the student’s
input as islands in this particular proof planning mode. If the system can
successfully complete the proof it is accepted – and otherwise not.

Active problem solving and exploration play an essential role in appren-
ticeship learning and interactive service systems such as a proof planner or
a computer algebra system can be used as cognitive tools here. 4

As its name suggests, ActiveMath emphasizes the active role of the
student and this feature is supported inter alia by the integration of some
computer algebra systems, MuPAD and the proof planner Multi. They
provide the backbone for interactive problem solving and for dynamically
producing feedback to the user’s actions. For university students as users,
the philosophy of ActiveMath suggests that the user controls her exercise
activities herself and no single pre-determined solution needs to be followed
as long as any correct solution results eventually [Buedenbender et al., 2002].

Standard theorem proving systems could, in principle, be employed for
the exploration of mathematical proofs as well, however essential obsta-
cles that prevent most of the systems from being used for mathematics
(except for logic) learning are their low-level logical input language, the
small-grained logic-level inference steps, and the poor user interface. Some
user interfaces such as PCoq [PCoq, ongoing] are useful for experts who
want to prove a theorem, but not for students who want to learn and un-
derstand how theorems from an undergraduate textbook, say, should be
proved. Similarly, the size and nature of the inference steps (resolution or
natural deduction) are too fine grained to be used in a classroom exercise.

4The term cognitive tool was coined in [Lajoie and Derry, 1993] and generally denotes
instruments supporting cognitive processes by extending the limits of the human cognitive
capacities, e.g., the working memory.
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In learning mathematical proof we need a higher level of abstraction
including the particular mathematical vernacular of the area to be taught.
This is where proof planning comes into play. For proof planning, there
is empirical evidence that instruction with proof planning examples, which
work at a higher level of abstraction, can be effective for learning [Melis et

al., 2001c].

Moreover, in order to support the student’s discovery of failed proof at-
tempts and their repair we made explicit some information that was im-
plicitly available in the proof planning process and we designed messages
about failures that can be useful for a learner. Failures include failing meta-
level application conditions of methods (e.g., inconsistency of collected con-
straints), failing object-level conditions of proof planning methods (e.g.,
missing precondition), as well as erroneous input for the construction of
mathematical objects (instantiations of meta-variables). Moreover, it in-
cludes meta-reasoning about ways to backtrack, subsequent introduction of
a case split into the proof plan, proof by analogy, or not yet sufficiently
determined meta-variables.

Feedback. Theorem proving systems and computer algebra systems can
be used to automatically check the student’s input and return a ‘correct’
(‘incorrect’) as, e.g., in the systems MathDox [Cohen et al., 1999] Active-

Math [Melis et al., 2001b] and EPGY [Sommer et al., 2000]. These auto-
mated problem solvers can also serve as back-engines for generating example
proofs or example computations.

Although classical theorem provers based on a machine oriented logic
are not very useful for teaching mathematical proofs. They are used to
advantage however in courses on logic as for example eTPS [TPS, 2004].

Meta-Reasoning. Although still a far cry from effective meta-reasoning,
first attempts to present or to employ Polya‘s problem solving heuristics
have been made. Cairns [Cairns and Gow, 2001] gives an interpretation of
Polya’s stages in his presentation of a proof that includes pointers to pre-
requisites and to applications of some theorem. Similarly, ActiveMath

uses Polya’s stages in a presentation-scenario that provides structure and
links to related topics. In the Polya-presentation scenario, the stages Un-

derstand the Problem, Devise a Plan, Carry out the Plan, and Look Back at

the Solution are realised by assembling certain types of learning objects by
their metadata. This way, proof examples and exercises can be presented
at the appropriate stage of searching for a solution to the given problem.

Cognitively Adequate Presentations. An adequate presentation of a
proof for education would have to address at least the following issues:

• hierarchically structuring a (complex) proof to make it more compre-
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hensible

• emphasize the proof process in order to support the student’s proof
activities and derivational transfer.

• cognitive overload

As for hierarchical structuring, the presentation of proof trees in a box style
is a good way to make the structure visible. However, the box structure is
logic-oriented and does not help much for mathematical proofs for which a
hierarchy helps to separate and express (and remember) proof ideas from
details.

Most current approaches to natural language presentation of proofs [Dahn,
1998; Fiedler, 1999; PCoq, ongoing] target a presentation similar to proofs
in a book. However, these presentations are result-oriented rather than
process-oriented. More abstraction is introduced by presentations based on
tactics using proof plans such as in [Holland-Minkley et al., 1999] and [Melis
and Leron, 1999].

As for emphasizing the proof process, presenting the search for a partial

proof plan is often useful, because it makes the proof situation explicit. For
instance, the collection of constraints of a meta-variable could be presented
in order to provide a clue on how to (interactively) construct a mathematical
object [Zimmer and Melis, 2004]. This can help the student to construct an

object which is the most difficult task in many proofs.

4 Challenges and Future Work

Tools for learning mathematics (and logic) are leaving the lab to be used
in practice,5 however there is still plenty of room for improvement. The
following open or only partially solved problems represent a spectrum from
the user-centered design of user interfaces and presentations up to the for-
malization of pedagogical strategies. Most of these challenges require inter-
disciplinary research.

Proof Presentation and User Interfaces. Learning mathematics in-
volves people, situations, and goals that are very different from those pre-
supposed for an automated theorem proving system. Apart from other
things, learning may have the goal to understand a given proof or find a
proof. In order to help the student to understand solutions and proofs, we
need a comprehensible proof presentation at various levels of abstraction,
detail and explanation upon request. In order to support learning by doing,

5For example the geometry tutor from Carnegie Mellon is used now in more than 2000
schools in the US.
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however, a better proof presentation alone is not sufficient as it requires
more advanced user-adaptive user interfaces specially designed for learning.

Currently the design of a user interface for a theorem proving system
typically starts with the special technical features and capabilities of the
underlying system rather than with a user-centered approach. This is not
just our own unfortunate experience with the user interface of the Ωmega

system [Siekmann et al., 1999], which is inadequate for an average student.
A student concentrates on learning and problem solving and any focus on
the tool produces a cognitive overload that gets in the way of learning and
mathematical skills. The structured (and foldable) hypermedia presenta-
tion of worked-out problem solutions as well as the presentation of infor-
mation relevant to the problem solving process is in fact much better than
a traditional textbook proof, which is in the tradition of minimalistic proof
presentation developed over the centuries in mathematics.

As part of the user interface, a simple to use input editor is needed. Some
work in this direction was done at RISC [Nakagawa and Buchberger, 2001]

with the Mathematica functionality, in Nice [Dirat et al., 2000], in Grenoble
[Nicaud et al., 2002], and for ActiveMath which by now features a full-
fledged palette-based input editor that generates OpenMath.

Feedback in Problem Solving. A system should reason about the stu-
dent’s input and not just use pre-computed solutions and proofs in order to
guide the student’s problem solving. Moreover, it is certainly not sufficient
to just respond ‘correct’ or ‘incorrect’. Interesting feedback has to include
the provision of counter-examples, similar proofs, explanations and hints.

Meta-Reasoning. The integration of heuristics and meta-reasoning into
a learning tool for learning mathematics is still a challenge. An advanced
tool support might offer means far beyond Polya’s ideas. For instance, the
student could use an online search tool for the Internet to find similar prob-
lems, analogous solutions, or the concepts which are prerequisites for her
proof. Semantic search techniques, managing (little) theories, browsing the-
ories, and maintaining and managing mathematical ontologies are currently
research topics of the MKM Conference series and as partially implemented
in ActiveMath search/dictionary tool.

Proof Planning In order to use proof planning in an educational setting,
several research directions are promising, among them

• more advanced support for reasoning about failed proof attempts and
appropriate support for revising a proof plan,

• support for checking whether a path is heuristically promising or dead-
ended altogether,
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• support for the construction of mathematical objects.

• Island planning as suggested in [Melis, 1996] is a good starting point
in order to develop a proof idea first and to leave the rest of the details
to the proof system.

5 Conclusion

The student is not like me.6 It is insufficient to rely on our own intuition
on what may be useful or not. It is also not enough to use standard psycho-
logical results about human learning when designing a learning tool. The
actual proof of usefulness and usability comes from observations on how
students actually use a system and from empirical evidence in controlled
experiments that measure the effect of a system.
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