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Abstract. Cognitive task analysis has been used in ITSs to predict stu-
dents’ performance, improve curricula and to determine appropriate feed-
back. Typically, the learning factors/knowledge components have been
determined only for the use in one ITS or curriculum and therefore,
general frameworks were not applied. Moreover, the result is sometimes
rather unsystematic and not reusable across domains. However, for mak-
ing learning environments interoperable and comparable and to be able
to reuse learning objects, the competency hierarchies have to be usable
for different learning environments and across domains. In this paper,
we propose an approach to competencies represented as pairs of knowl-
edge and cognitive process whose ontologies extend and revise existing
taxonomies. A goal is to make these competencies a quasi-standard that
enables interoperability and reuse. Moreover, we briefly describe, how
the competency ontology can be employed for different purposes.

1 Introduction

The cognitive analysis of domains and tasks is a common requirement for design-
ing an ITS and/or its content as well as for designing the structure of student
models. The competencies resulting from this analysis (also called learning fac-
tors, knowledge elements, skills, or knowledge components) have been used to
characterize tasks, exercises and exercise steps with the goal to choose appro-
priate exercises, and to improve a curriculum, e.g. in [1, 2, 3]. In pedagogical
psychology, cognitive task analysis plays a role for diagnosing and evaluating
students’ learning progress [4].

As a general framework for such an analysis, Bloom devised his well-known
taxonomy of educational objectives [5]. The cognitive objectives he addressed
are general and domain independent and a relation to domain-specific settings
is missing. More recent work in this field has extended Bloom’s taxonomy [6].

As opposed to Bloom, the learning factor/knowledge component analysis for
ITSs typically focuses on domain knowledge [2] and targets a set of knowledge el-
ements for the usage in one ITS, sometimes even without a hierarchical structure.



4 For instance, the knowledge components integers and addition in exercises of
the ASSISTment system 5 denote elements of a domain ontology without explic-
itly addressing the cognitive or meta-cognitive processes needed in an exercise for
integers or addition. However, for making learning environments interoperable
and comparable and to be able to reuse learning objects and competency anno-
tations, the competency hierarchies have to be usable across different learning
environments and (partially) across domains.

In recent years, the appropriateness of the competencies resulting from the
knowledge component analyses has been questioned wrt. the actual elements
and their granularity [2, 7]. The main goal of the questioning was to improve
the design of curricula and the prediction of students’ performance. Now, we
question the knowledge component/competency representation. The need for
this arises from the aim of sharing content, reuse components, and services for
learning environments and from the use of (standardized) metadata in web-based
learning systems.

In this paper, we propose an approach that extends existing work, fits the
needs of cognitive task analysis in various domains (e.g. fractions and calculus)
and that is implemented in the ActiveMath platform. The main contributions
are an ontology which refines a recent competency hierarchy that pair knowledge
with cognitive processes, (partial) translations of previous taxonomies into the
new ontology, and a demonstration of usages of the resulting competencies.

2 Previous Competency Systems

Learning objects such as exercises as well as their steps can be characterized
(in technical terms: annotated) with the competencies required to solve a prob-
lem/succeed with a step.

For the ASSISTment Project Heffernan et al. have empirically determined so-
called knowledge components (called skills) to characterize exercises and their
steps [7]. These knowledge components include: integers, addition, rounding,
ordering numbers, reduce fractions, equivalence of fractions and decimal per-
cents, equiliteral triangle, evaluating functions, finding percents, statistics, mak-
ing sense of expressions and equations, order of operations, graph shape, reading
graph, divide decimals, . . . and have been defined by subject matter experts and
by analyzing the Massachusetts curriculum. All of these knowledge components
point to knowledge (a concept, rule, or procedure of the domain). Some of these
knowledge components could also be interpreted as pointing to knowledge and
a cognitive process.

Bloom [5] describes a hierarchy of educational goals that include:

– Knowledge: remembering; memorizing; recognizing; recall identification; re-
call of information

4 Typically, the learning factors/knowledge components have been determined empir-
ically by expert judgement for exercises or by analyzing curricula.

5 Personal communication with Neil Heffernan



– Comprehension: interpreting; translating from one medium to another; de-
scribing in one’s own words; organization and selection of facts and ideas

– Application: problem solving; applying information to produce some result;
use of facts, rules and principles

– Analysis: subdividing something to show how it is put together; finding the
underlying structure of a communication; identifying motives; separation of
a whole into component parts

– Synthesis: creating a unique, original product that may be in verbal form
or may be a physical object; combination of ideas to form a new whole

– Evaluation: making value decisions about issues; resolving controversies or
differences of opinion; development of opinions, judgments or decisions

Anderson et al. [6] extends Bloom’s taxonomy and pairs cognitive processes
with knowledge to represent competencies. They introduce two different dimen-
sions, the dimension of cognitive processes and the dimension of knowledge. Pairs
of cognitive processes and knowledge elements form objectives (that constitute
the basic building blocks of curricula). This was motivated by analyzing objec-
tives listed in curricula, usually consisting of phrases such as “The student will
learn to differentiate between rational numbers and irrational numbers” ([6], p.
5). They point out that such phrases typically are composed of a verb describing
the intended cognitive process and one or more nouns referring to knowledge the
students are supposed to acquire.

The competencies used for the PISA studies [8] include think, argue,
model, solve, represent, language, tools. These top competencies have
subcompetencies, e.g. model has the subcompetenices decode and encode.

The PISA competencies arise from the international discussion in mathemat-
ics education (with influence from OECD and NCTM). Approximatively, they
represent learning objectives on a higher level. An advantage that is stressed is
their independence of content and independence of students’ age. The compe-
tencies are:

– Think mathematically includes the abilities to understand and handle math-
ematical concepts, their scope, and to understand and distinguish between
different kinds of mathematical statements.

– Argue mathematically includes the abilities to develop and assess chains
of arguments, to know what a mathematical proof is, to describe and rea-
son about solutions, to uncover basic ideas in a line of arguments, and to
understand reasoning and proof as fundamental aspects of mathematics.

– Solve problems mathematically includes the abilities to identify, pose and
specify problems, to self-constitute problems, to monitor and reflect on the
process of problem solving, to endue strategies and heuristics, and to solve
different kinds of problems.

– Model mathematically includes the abilities to translate special areas and
contents into mathematical terms, to work in the model, to interpret and
verify results in the situational context, and to identify differences between
the situation and the model.



– Use mathematical representations includes the abilities to understand
and utilize different representations of mathematical objects, phenomena,
and situations, to find relations between different representations, and to
choose the appropriate representation for the special purpose.

– Language includes the abilities to use parameters, terms, equations and func-
tions to model and interpret, to translate from symbolic and formal language
into natural language and vice versa, and to decode and interpret mathe-
matical language and understand its relations to natural language.

– Communicate includes the abilities to explain solutions, to use a special ter-
minology, to work in groups, e.g. explain at an adequate level and understand
and verify statements of others.

– Use tools and aids includes the abilities to know about the existence of
various tools and aids for mathematical activities, their range and limita-
tions, and to reflectively use them.

3 New Definition of the Competency Taxonomy

We define elementary competencies as pairs of a cognitive process and a knowl-
edge element. We consider it a as a pair c of cognitive process p and a knowledge
element k, c = (p, k). Cognitive processes are defined as in [6] while knowl-
edge elements represent facts, topics, concepts, theorems, rules/procedures and
Grundvorstellungen [12] - i.e., elements of the knowledge dimension as available
in ActiveMath and in the ontology of instructional objects OIO [10].

Composite competencies are defined as a set of multiple elementary compe-
tencies. In comparison to the work of van Assche [11], where a competency is
defined as a tuple c =< v, {t1, . . . , tn} > (ti are topics – our knowledge ele-
ments). Our definition, however, facilitates the representation within the learner
model by reducing dimensionality without loss of expressivity.

3.1 Knowledge Ontologies / Extended Domain Ontologies

Knowledge elements can be related to each other, and therefore, a domain can
be represented by an ontology. The knowledge includes concepts (e.g. fraction,
integer, numerator), rules (e.g. addition of fractions with unlike denominators
or subtraction), and Grundvorstellungen6. Grundvorstellungen in the fraction
domain are part-whole, ratio, operator, quotient, and measure which provide
different interpretations of a fraction in application contexts [13]. Other Grund-
vorstellungen exist for addition, multiplication and division of fractions too. The
Grundvorstellungen have corresponding elements (nodes) in the educational do-
main ontology.

6 We use the German term here since we could not find an appropriate translation for
this term which was coined by German educationalists. A possible translations may
be “interpretation/meaning of a concept”.



3.2 Ontology of Cognitive Processes

According to Flavell [15], meta-cognition is composed of meta-cognitive knowl-
edge and meta-cognitive experiences or regulation. Meta-cognitive knowledge
includes acquired knowledge about cognitive processes. Flavell divides meta-
cognitive knowledge into three categories: knowledge of person variables, task
variables and strategy variables. Correspondingly, Anderson et al. [6] differ-
entiate between self-knowledge, knowledge about cognitive tasks, and strategic
knowledge, and place these meta-cognitive aspects exclusively into the knowl-
edge dimension.

Our ontology of cognitive processes modifies and extends [6] by adding meta-
cognitive processes that aim at representing the meta-cognitive regulation pro-
cesses.

Although meta-cognitive competencies may be seen as more global/general
proficiencies of a learner, the evidences always occur in a knowledge context
whose influence has still to be investigated empirically. It may be that the abil-
ity to apply meta-cognitive processes varies depending on the proficiency in the
respective domain and possibly even between different knowledge elements. Ad-
hering to our definition of competency as pair of cognitive process and knowledge,
the absence of meta-cognitive processes leads to meta-cognition related compe-
tencies, which can only express a global proficiency regarding meta-cognitive
aspects and does not allow for a differentiation of how well a student is able to
consciously apply meta-cognitive operations to specific knowledge elements or
within a certain domain, e.g. questions such as “how proficient is the student in
detecting errors within problems of the fraction domain?”, cannot be answered.
Therefore, we add meta-cognitive processes to the process dimension.

The first and second columns in Table 1 show the proposed hierarchy of the
cognitive processes. Several cognitive processes are combined into categories:

– Remember: consists of the most basic retrieval operations performed on knowl-
edge, i.e. the recognition of knowledge and its recall from memory.

– Represent: includes the abilities to interpret knowledge (e.g. “a fraction
consists of two numbers: the numerator divided by the denominator“), to
illustrate - to find an instance of a given concept, to transform from one rep-
resentation to another, and to summarize (generalize) by inferring common
principles or by identifying the main aspects of some information.

– Solve: includes the ability to estimate a result without calculating its exact
value (e.g. estimate whether the addition of two fractions results in more or
less than one), to apply algorithms with all their steps, and to apply tools
appropriately (e.g. a calculator to add fractions).

– Analyze: summarizes abilities needed to break information into parts and to
determine how these parts relate to each other and to the general picture.
This category consists of the abilities to check information for inconsistencies
or problems, to differentiate between important and unimportant informa-
tion, to organize information according to some criteria, and to attribute a
bias, value or intent to some presented material.



– Model: combines abilities needed to understand and create models in a spe-
cific domain. Included are the capability to decode information presented
and transform it into a mathematical model (e.g. a textual description of
ratios of some persons’ ages, decoding could be putting the ratios into an
equation), to encode a mathematical model into a situational context or its
transformation into another domain. Furthermore, the category includes to
generate hypotheses, and to produce new models by combining hypotheses
to achieve a certain goal.

– Communicate: is concerned with explaining and discussing knowledge. It con-
tains the processes of how to describe one’s own knowledge, to argue about
different aspects of some knowledge, and to prove certain facts.

– Meta-cognition: consists of meta-cognitive processes, i.e. processes that aim
at reflecting and controlling cognitive processes. Such processes include to
reflect upon one’s own knowledge and thinking processes. Furthermore, help
seeking, and to search for information to fill gaps in or extend one’s own
knowledge, to detect errors in one’s own or the work of others, to plan tasks
by dividing them into steps and order them according to their sequence of
execution/implementation, to self-monitor one’s own actions and behavior
(e.g. by analyzing progress and differentiating between more effective learn-
ing strategies and less effective ones, and hence choose an appropriate one),
and finally, to self-explain.

Some of the processes, such as estimate, could be placed into several of the
categories, since they can be applied at different levels. The reason to place
estimate into the Solve category is a specific interpretation, i.e., in the sense
of applying rules of thumb or heuristics in order to get an idea of what the
actual result may be. Alternatively, estimate may be interpreted as the process
of ordering some aspects and inferring certain points.

4 Usage of the Ontologies

From the beginning, knowledge elements from domains have been character-
ized by metadata in ActiveMath. Exercises are annotated with metadata that
specify which concepts they train and what cognitive processes are involved in
attaining the correct solution. Cognitive processes have been present in Active-
Math as metadata for exercises, exercise steps and other learning objects. The
metadata scheme evolved over time:

In the first version of the ActiveMath platform [16], Bloom’s taxonomy
was used. Later, we introduced the PISA-competencies for the LeActiveMath
application of the ActiveMath-platform. The knowledge dimension is implic-
itly defined in the content and its metadata. This revision of competencies was
driven by the influence of the pedagogical partners involved in the LeActiveMath
project. Currently, ActiveMath relies on the competencies described above.



4.1 Student Modeling

ActiveMath’s student model [17] can be parameterized to use different com-
petency taxonomies. The structure of the student model includes nodes ki for
knowledge components. In case of using the proposed taxonomy, it stores pairs
of cognitive processes and (domain) knowledge. This is done by relating each
knowledge (super-)node ki to a cognitive process pj . The knowledge elements
are dynamically extracted from the learning objects included in the content.

The student model derives competency values from evidences: exercises (whose
metadata specify the knowledge and cognitive processes needed) and the respec-
tive performance/action of the student. Exercises-to-concept and concept-to-
concept relations are dynamically extracted from the learning content in order
to derive the competencies that have to be updated. In case of a competency
involving multiple knowledge elements, evidences about proficiencies are equally
attributed to all elementary competencies, as long as no further information is
available to differentiate the attribution to a specific competency.

Evidences can be propagated along prerequisite relations in the student model.
The propagated evidences are regarded as indirect evidences and are overridden
as soon as direct evidence is available. In order to estimate proficiencies at a
more general level, the hierarchical nature of the competency taxonomy is ex-
ploited, so that a more general competency reflects how the subcompetencies
are mastered (and to what degree).

4.2 Selection of Content

Based on the estimations of the student model, the Tutorial Component selects
appropriate learning objects, which serve the improvement of goal competencies
[18]. One of the limitations of adaptively assembling courses is the availability
of learning objects with perfectly matching knowledge and cognitive processes
metadata. However, if no learning object is found that has exactly the metadata
requested by the Tutorial Component, the hierarchical structure of both ontolo-
gies can be used to relax the search for learning objects and select a learning
object that serves the training of a more general (or similar) cognitive process
and knowledge.

Similarly, the two hierarchies (for knowledge and for cognitive processes) can
be employed to facilitate mappings of exercises from different learning object
repositories for course generation [19].

The relaxed search for knowledge and cognitive process metadata can lead
to approximate mappings. Additionally, approximate mappings can be used for
the alignment of different curricula as proposed in [11].

5 Relation to Existing Competency Taxonomies

One of the goals of the proposed competency taxonomy is to subsume and inte-
grate existing competency systems, such as the PISA competency hierarchy and



the revised Bloom taxonomy. Therefore, we define (partial) mappings between
our cognitive process hierarchy, the revised Bloom taxonomy and the PISA com-
petency hierarchy.

Table 1 relates our process hierarchy to the PISA (mathematics) compe-
tencies and to cognitive processes in [6]. In some cases, finding a correspond-
ing PISA-competency is rather difficult. One reason for the difficulty is that
the PISA-competencies often include multiple processes in a single competency
and sometimes also elements that we would place into the knowledge dimen-
sion. Thus, for the mapping, we compared the aspects of PISA competencies
regarding the actual cognitive processes involved. Elements that are placed into
parentheses capture only part of the scope of a proposed cognitive process.

Paquette [9] (kindly brought to our attention by a reviewer) presents a top-
level ontology for competencies, and a competency taxonomy pairing generic
skills with ressources, corresponding to cognitive processes and knowledge el-
ements respectively. His taxonomy combines and extends several previous ap-
proaches such as Bloom’s. A mapping to the original approaches is provided.

6 Future Work

Since the proposed competency taxonomy leads to a fine granularity of compe-
tencies, ways to exploit the hierarchy of the taxonomy need to be developed in
order to overcome the problem of sparse data. Therefore, we plan to explore the
influence of the hierarchy on learner model estimations by comparing estimations
with real students’ performance. The additionally inferred data may provide a
means for fine-grained and accurate estimations and, e.g. provide teachers with
detailed information about students’ weaknesses and strengths enabling them to
revise their courses, e.g. to add an extra repetition of a poorly understood topic.

7 Conclusion

Most previous ITS have only used the knowledge dimension for characterizing
their exercises and exercise steps as well as for building a structure for student
models.

In order to make ITS-content and its metadata reusable and systems inter-
operable on learning objects, we propose a framework for competencies that can
be used across domains and for many ITSs. This ontology framework includes
two taxonomies, one for (domain) knowledge and one for cognitive processes.
We define a taxonomy for cognitive processes which extends and modifies the
taxonomy of Anderson et al. and we also extend the types of knowledge included
in domain ontologies by Grundvorstellungen which are an important ingredient
for real world problems.

We compare and translate several well-known competency taxonomies with
the new ontological framework and briefly indicate why the hierarchical, two-
dimensional framework is useful.



Table 1. Mappings of the proposed cognitive processes to revised Bloom and PISA.

Proposed category Proposed process PISA Revised Bloom

Remember Recognize n/a Recognize
Recall n/a Recall

Represent Interpret Represent/Think Interpreting
Exemplify Represent Exemplifying
Transform Represent Interpreting
Summarize Think Summarizing

Compare Find commonalities Think Comparing
Find differences Think Comparing
Classify Think Classifying
Infer Think Inferring
Order Think Comparing

Solve Estimate Solve Inferring
Apply algorithm Solve Executing
Apply tool Tools n/a

Analyze Check Solve Checking
Differentiate Think/Model Differentiate
Organize n/a Organize
Attribute (Think/Argue) Attribute

Model Decode Model Interpreting
Encode Model Interpreting
Generate Model/Think Generating
Produce n/a Producing

Communicate Describe Communicate Explaining
Explain Communicate Explaining
Critique Argue Critiquing
Prove Argue Inferring

Meta-cognition Reflect (Solve/Model) n/a
Help seeking n/a n/a
Search for information n/a n/a
Detect errors (Solve) Checking
Plan (Solve) Planning
Self-monitor (Solve) Checking
Self-explain (Argue/Communicate) (Explaining)
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