
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Failure Reasoning in Multiple-Strategy Proof
Planning

Andreas Meier 1 Erica Melis 2

German Research Center for Artificial Intelligence (DFKI)
Saarbrücken, Germany

Abstract

Monitoring a solution process and applying the right action at the right moment are
at the heart of intelligent problem solving by humans. This includes the analysis
of failure events and the development of “recommendations” to overcome typical
failures.

In this article, we present how meta-reasoning on failures is used in multiple-
strategy proof planning with the Multi system. Multi allows for a flexible traversal
of the search space and a flexible construction of the proof plan guided by math-
ematically motivated heuristics. Because of the flexible control in Multi failures
can be exploited to guide subsequent proof plan manipulations and refinements.
The failure reasoning cannot only ease the derivation of a solution proof plan but
is required for some problems to find a solution at all.

Key words: Proof Planning, Meta-Reasoning

1 Introduction

In a problem solving process, a step may not result in the expected progress
or may not be applicable as expected. Hence, it is part of intelligent problem
solving to analyze a failure event and to develop “recommendations” to handle
typical failures, i.e., to guide the subsequent solution process. This also holds
for mathematical theorem proving for which “monitoring the state of a solution
as it evolves and taking appropriate action in the light of new information”
is a key skill as Schoenfeld points out in his book on mathematical problem
solving [16].

Monitoring the solution process and using “recommendations” requires
a flexible control approach and reasoning about the problem solving situa-
tion. Intelligent humans do not rely upon pre-determined control to guide

1 Email: ameier@dfki.de
2 Email: melis@dfki.de

c©2005 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Meier Melis

their problem solving. Instead, they draw upon a repertoire of heuristics for
dynamic solution construction. As opposed to human problem solving, search-
based theorem proving systems often employ restricted control components.
Typically, e.g., in provers based on the resolution principle, the control is
based on “local” general-purpose heuristics that reason on the current proof
facts and the possible inferences. As result, the control decisions are restricted
to the selection of the inference rule and the premises for the next step in the
proof derivation. Other decisions are often hard-coded into the system and
not subject to reasoning about control such that monitoring and overseeing
the entire problem-solving process is hardly possible.

Proof planning is an approach to mathematical theorem proving in which
the proof of a theorem is planned at the abstract level of so-called methods.
The knowledge-based proof planning developed in the Ωmega group employs
declarative meta-reasoning to guide the search [14]. Mathematically motivated
heuristics cannot only reason about the current goals and assumptions but
also about the proof planning history and the planning context. Moreover, in
Ωmega’s automated multiple-strategy proof planner Multi the choice points
that are subject to heuristic guidance are not restricted to the next goal and
the next method. Rather, also the decisions on which strategy to choose
can be guided, where strategies are independent proof plan operations, and
different strategies can realize, for instance, different kinds of backtracking
and different kinds of variable instantiation.

In extensive experiments we applied Multi to several mathematical do-
mains. The analysis of Multi’s proof attempts revealed typical failure situ-
ations as well as meta-reasoning patterns on how to deal with these failure
situations. It turned out that during the automated proof construction with
Multi such failure reasoning patterns do not only guide “clever” steps that
ease the derivation of a solution proof plan but are often necessary to find a
solution at all.

In this paper, we shall describe the realization of meta-reasoning on failures
in the multiple-strategy proof planner Multi. First, we introduce the basics of
proof planning with multiple strategies and point out how Multi’s flexible con-
trol approach allows for a flexible handling of impasses in the proof planning
process. Afterwards, section 3, we describe several failure reasoning patterns
that analyze and exploit failures to guide proof plan manipulations and refine-
ments. The subsequent sections, section 4 – 5, exemplify the realization and
application of the failure reasoning patterns to proof plan ε-δ-problems. Al-
though we illustrate the failure reasoning patterns with ε-δ-proofs, this meta-
reasoning is applicable to other domains as well as our empirical results in
section 6 evidence. Section 7 concludes the paper with a discussion of related
work.

2

Meier Melis

2 Proof Planning with Multiple Strategies

Proof planning was originally conceived as an extension of tactical theorem
proving to implement automated theorem proving at the abstract level of
tactics. Bundy’s key idea in [3] is to augment individual tactics with pre- and
postconditions. This results in planning operators, so-called methods. In the
Ωmega [17] system proof planning is enriched by incorporating knowledge into
the planning process [14] and the introduction of the additional hierarchical
level of strategies [13].

Domain-specific knowledge can be encoded in methods and control rules.
Methods can encode not only general proving steps but also steps particular
to a mathematical domain. Heuristics guiding the search can be encoded in
control rules. The control rules are evaluated at choice points in the planning
process and can express meta-level reasoning about the current proof planning
state as well as about the entire history of the proof planning process and the
proof context. Further domain-specific knowledge can be contained in external
systems that are incorporated into the proof planning process. For proof
planning ε-δ-problems, which we shall discuss, in particular, the constraint
solver CoSIE for equations and inequalities over the reals is important.

Proof construction may require to construct mathematical objects, i.e.,
to instantiate existentially quantified variables by witness terms. In proof
planning, meta-variables are used as place holders for witness terms. When
proof planning ε-δ-problems, equations and inequalities with meta-variables
are passed to CoSIE . CoSIE checks the (in)consistency of the constraints and
collects consistent constraints in a constraint store. Later, it tries to compute
instantiations for the meta-variables that satisfy the collected constraints [18].

The simplest version of proof planning, realized in the previous proof plan-
ner of Ωmega, searches at the level of methods only, i.e., as long as there are
goals it searches for applicable methods and applies the instantiated methods,
which are called actions. The final sequence of actions forms a solution plan.
The application of the operations backtracking and meta-variable instantia-
tion is hard-wired with the action introduction: The proof planner backtracks,
if and only if there is a goal to which no method is applicable. If this is the
case, the planner backtracks the action that introduced this goal. Moreover,
it instantiates meta-variables at the end only, when all goals are closed.

Case-studies revealed that this proof planning approach is somewhat in-
flexible and fails for a number of problems (e.g., see [13]). In particular, the
previous proof planner of Ωmega fails for problems whose solution requires
reasoning on failures. Because of its hard-coded control and its restricted
functionalities, it neither provides choice points to reason on failures nor suit-
able alternatives (e.g., different kinds of backtracking) to choose from. For
instance, consider the following two impasses: (1) If no method is applicable,
then the application of a particular backtracking operation is hard-coded in
the planner; reasoning on the failure and choosing between different kinds of

3

Meier Melis

reactions is not possible. (2) The meta-variables are always instantiated at
the end by incorporated constraint solvers. When the constraint solvers fail,
then reasoning on this failure and choosing alternative actions to overcome it
are also not possible.

These observations as well as the observation of further drawbacks of the
previous proof planning approach (see [13]) motivated the development of
proof planning with multiple strategies. Proof planning with multiple strate-
gies decomposes the previously monolithic proof planning process and replaces
it by separate strategies, which are instances of parameterized algorithms for
different proof plan refinements and modifications.

We implemented proof planning with multiple strategies in the proof plan-
ner Multi [13]. Among others, Multi employs general algorithms for action
introduction, meta-variable instantiation, and backtracking. The algorithm
for action introduction has parameters for a set of methods and a set of control
rules. When Multi executes a strategy of this algorithm, then the algorithm
introduces only actions that use the methods specified in the strategy. The
choices during the action computation and selection are guided by the control
rules specified by the strategy. The single parameter of the instantiation algo-
rithm is a function that determines how the instantiation for a meta-variable
is computed. If Multi applies an instantiation strategy wrt. a meta-variable
mv and if the computation function of the strategy yields a term t for mv,
then the instantiation algorithm substitutes mv by t in the proof plan. The
single parameter of the backtrack algorithm is a function that computes a set
of refinement steps of other algorithms that have to be deleted. When Multi

applies a backtrack strategy, the algorithm removes all refinement steps that
are computed by the function parameter of the strategy as well as all steps
that depend from these steps. Sample strategies of all three algorithms are
discussed in section 4 and section 5.

In Multi, no sequence of strategies is pre-defined or hard-coded in a control
cycle. Rather, Multi’s blackboard architecture enables the flexible cooperation
of independent strategies guided by meta-reasoning in strategic control rules.
In a nutshell, Multi operates according to the following cycle:

Job Offers Applicable strategies post their applicability in form of so-called
job offers onto the blackboard.

Guidance Strategic control rules are evaluated to order the job offers.

Invocation The strategy with the highest ranked job offer is invoked.

Execution The algorithm of the invoked strategy is executed with respect to
the parameter instantiation specified by the strategy.

Note that the execution of an action introduction strategy can be inter-
rupted (i.e., interruption is a choice point in the action introduction algo-
rithm). In this case, Multi can first apply some other strategies and then
re-invoke the interrupted strategy execution. A detailed, technical description
of the Multi system can be found in [10].

4

Meier Melis

Failures in the action introduction algorithm, i.e., a goal for which no
method is applicable, result in an interruption of the action introduction al-
gorithm. Multi continues to work at the strategy level by collecting job offers
and evaluating strategic control rules to rank the job offers. Similar to the
previous proof planner, Multi’s default approach to deal with such a failure
is to backtrack the action that introduced this goal. However, this backtrack
approach is not hard-coded into Multi’s algorithm. Rather, it is realized by
an according strategy of the backtrack algorithm and a strategic control rule
that guides the application of this backtrack strategy after such a failure. Fur-
ther backtrack strategies can be encoded that delete different sets of actions.
Moreover, further strategic control rules overwriting this default behavior can
be specified that reason on the failure and guide suitable subsequent proof
plan refinements and modifications. Also reasoning on failing meta-variable
instantiations is possible, since in Multi the instantiation of meta-variables is
not pre-defined to be the final proof plan refinement.

3 Failure Reasoning

For many situations, the default handling of failures in Multi (see previous
section) is not sufficient. Rather, different handling of failures is necessary.
The reasons for this are twofold:
(1) Theorem proving often requires steps whose necessity is difficult to predict.
Reasoning about a situation in which a failure occurred can suggest certain
recovery or solution steps. Hence, the failures and their productive use can
hold the key to discover a solution proof plan.
(2) Goals and applications of methods and strategies can be intertwined in
complex ways. In particular, the incorporation of constraint solving into proof
planning causes dependencies that make a “standard” handling of failures
difficult. Rather, dependencies have to be analyzed in order to guide suitable
reactions.

In the following, we shall discuss several domain-independent and general
meta-reasoning patterns on typical failures. The meta-reasoning patterns are
declaratively encoded into corresponding control rules. This encoding and the
concrete application to ε-δ-problems are discussed in section 5.

Guiding Case Splits

Case-split is a well-known technique in mathematics. But when is it useful
to apply it and which cases should be considered? The following general
pattern describes the need for a case-split: there is a main goal, which can be
solved by methods introducing some side goals. These side goals are called
conditions. If one of the conditions cannot be solved, then a partial success,
i.e., the solution of the main goal, gives rise to consider patching the proof
attempt by a case-split on the failing condition. Then, the main goal has to
be proved for each case. This approach corresponds to the meta-reasoning

5

Meier Melis

pattern:

Case-Split Introduction:

IF failing condition while main goal is solved

THEN introduce case-split on failing condition

In the concrete application of this meta-reasoning pattern to ε-δ-problems,
see section 5, we shall explain how the main goal and the side goals are deter-
mined in this domain.

Unblock Meta-Variable Instantiation

During the proof planning process the application of certain key steps
can become particularly “desirable”. If such a desirable step should be ap-
plied but is blocked, then the application of other steps should be considered,
which will unblock the desirable step. As example consider strategies of the
instantiation algorithm that employ constraint solvers. When all goals are
closed, the application of these strategies becomes highly desirable to instan-
tiate the meta-variables. However, when the constraint solvers fail because
the constraints collected so far are not sufficient, then the application of these
strategies fails. A possibility to overcome this problem is to refine the existing
constraints in order to obtain an extended set of refined constraints for which
a solution exists. This approach corresponds to the meta-reasoning pattern:

Unblock Meta-Variable Instantiation:

IF constraint solver fails to provide instantiations

because of insufficient constraints

THEN create and pass further constraints

In the concrete application of this meta-reasoning pattern to ε-δ-problems,
see section 5, we shall explain how certain steps are selected for backtracking
in order to enable the creation of further constraints in this domain.

Analysis of Meta-Variable Dependencies

The instantiations of meta-variables and constraints on the meta-variables
cause dependencies among goals that share these meta-variables. Take, e.g.,
two goals G and G′ that both contain a meta-variable mv. Now assume that
Multi first creates a partial proof plan for G and binds mv in such a way
that G′ cannot be proved anymore. The default backtracking in Multi would
remove G′. However, the actual problem is not G′ but the selection of an
appropriate instantiation for mv. That is, part of the subplan for G has to be
removed to introduce another subplan that instantiates mv differently. This
approach corresponds to the general meta-reasoning pattern:

6

Meier Melis

Analyze MV-Dependencies:

IF failure on goal caused by meta-variable instantiation/constraints

THEN backtrack meta-variable instantiation/constraints

In the concrete application of this meta-reasoning pattern to ε-δ-problems,
see section 5, we shall explain how the causal connection of a failure with the
instantiation of a meta-variable or constraints on meta-variables is determined
in this domain.

4 Proof Planning ε-δ-problems

We shall elaborate the usage of these meta-reasoning patterns for ε-δ-problems,
which prove statements about the limit, the continuity, or the derivative of
a function f at a point a. The standard definitions of limit, continuity, and
derivative comprise a dependency of a δ from an ε. For instance, the defini-
tions of limit and continuity are:

lim
x→a

f = l ≡
∀ε (0 < ε ⇒ ∃δ (0 < δ ∧ ∀x (|x− a| > 0 ∧ |x− a| < δ ⇒ |f(x)− l| < ε)))

cont(f, a) ≡ ∀ε (0 < ε ⇒ ∃δ (0 < δ ∧ ∀x (|x− a| < δ ⇒ |f(x)− f(a)| < ε)))

An example theorem is the Cont-If-Deriv problem that states that, if a func-
tion f has a derivative f ′ at point a 3 , then f is continuous at a. When the
definitions of limit and continuity are expanded, then the problem’s assump-
tion is

∀ε1 (0 < ε1 ⇒
∃δ1 (0 < δ1 ∧ ∀x1 (|x1 − a| < δ1 ∧ |x1 − a| > 0 ⇒ |f(x1)−f(a)

x1−a
− f ′| < ε1)))

and the problem’s theorem is

∀ε (0 < ε ⇒ ∃δ (0 < δ ∧ ∀x (|x− a| < δ ⇒ |f(x)− f(a)| < ε))).

An ε-δ-proof of this problem as well as of similar theorems constructs a real
number δ depending on ε that satisfies certain inequalities. 4 The usual pro-
cedure for discovering a suitable δ is the incremental restriction of the range
of values. Proof planning adopts this approach by replacing unknown witness
terms such as δ by meta-variables and by cooperating with the constraint
solver CoSIE , which collects constraints on the meta-variables.

3 That is, if lim
x1→a

f(x1)−f(a)
x1−a = f ′.

4 The construction of a δ is is a non-trivial task for students as well as for traditional,
resolution-based automated theorem provers. Bledsoe proposed several versions of the prob-
lem Lim+ as a challenge problem for automated theorem proving [2]. The simplest versions
of this problem (problem 1 and 2 in [2]) are at the edge of the capabilities of traditional
automated theorem provers but the harder versions are beyond their capabilities. More
difficult problems such as Cont-If-Deriv cannot be proved by traditional provers.

7

Meier Melis

In the remainder of this section, we describe the strategies employed by
Multi to accomplish ε-δ-proofs. A more detailed description of this application
of Multi is given in [10].

Strategies

Central for accomplishing ε-δ-proofs with Multi is the action introduction
strategy SolveInequality, see Table 1. It is applicable to goals whose formu-
las are inequalities. SolveInequality mainly comprises methods that deal with
inequalities such as FactorialEstimate, ComplexEstimate, Solve*-B,
TellCS, and AskCS. The control rule prove-inequality is in the list of
control rules of SolveInequality.

Strategy: SolveInequality

Condition inequality-goal

Action

Algorithm Action-Introduction

Methods ComplexEstimate, TellCS, Simplify,

AskCS, Solve*-B, FactorialEstimate . . .

C-Rules prove-inequality, . . .

Table 1
The SolveInequality strategy.

When faced with an inequality goal, SolveInequality first tries to apply
the methods TellCS and AskCS, which both interface CoSIE . TellCS
passes the goal as constraint to CoSIE (provided it is consistent with the
constraints collected by CoSIE so far), whereas AskCS asks CoSIE whether
the goal is entailed by its current constraints. If an inequality is too complex
to be handled by CoSIE , then SolveInequality tries to apply methods such as
Simplify, Solve*-B, ComplexEstimate, and FactorialEstimate that
reduce an inequality to simpler inequalities. For instance, applications of the
ComplexEstimate method exploit the Triangle Inequality and reduce a goal
with formula |b| < e to simpler inequalities in case there is an assumption |a| <
e′ and b = k∗a+l holds for suitable terms k and l. 5 The resulting simpler goals
are |l| < e

2
, e′ < e

2∗mv
, |k| ≤ mv, and 0 < mv, where mv is a new meta-variable.

The method FactorialEstimate deals with fractions in inequalities. It
reduces a goal of the form | t

t′
| < t′′ to the three subgoals 0 < mvF , mvF <

|t′|, and |t| < t′′ ∗ mvF , where mvF is a new meta-variable. Applications of
Solve*-B exploit transitivity of <,>,≤,≥ and reduce a goal with formula
a1 < b1 to a new goal with formula b2σ ≤ b1σ in case an assumption a2 < b2

exists and a1, a2 can be unified by the substitution σ. The method Simplify

5 Part of the application of the method is the computation of k, l for given b and a. This
is done by the incorporated computer algebra system Maple.

8

Meier Melis

employs computer algebra systems to perform arithmetic simplifications of
terms. When applied to a goal with arithmetic subterms that can be simplified
by the computer algebra systems, it reduces the goal to a new goal with
simplified subterms.

So, SolveInequality successively produces simpler inequalities until inequal-
ities are reached that are accepted by CoSIE . This approach – handle with
CoSIE or simplify – is guided by the control rule prove-inequality. This
rule first checks whether the current goal is an inequality. If this is the case, it
prefers the methods of SolveInequality in the desired order: TellCS, AskCS,
Simplify, Solve*-B, ComplexEstimate, FactorialEstimate etc.

To derive ε-δ-proofs Multi also employs the domain-independent action
introduction strategies NormalizeGoal and UnwrapAss. Both strategies contain
general methods for the decomposition of logic connectives and quantifiers.
Whereas applications of NormalizeGoal decompose goals, applications of Un-
wrapAss decompose assumptions.

In order to instantiate meta-variables that occur in constraints collected
by CoSIE , Multi employs the two instantiation strategies InstIfDetermined
and ComputeInstFromCS. The first is applicable only, if CoSIE states that a
meta-variable is already determined by the constraints collected so far. Then,
the computation function connects to CoSIE and receives this instantiation
for the meta-variable. ComputeInstFromCS is applicable to all meta-variables
for which constraints are stored in CoSIE . The computation function of this
strategy requests from CoSIE to compute an instantiation for a meta-variable
that is consistent with all constraints collected so far.

Application and Cooperation of the Strategies

For proof planning an ε-δ-problem Multi typically proceeds as follows:
First, it applies NormalizeGoal to decompose the initial goal. Afterwards, it
applies SolveInequality to the resulting inequality goals. Some methods of the
strategy SolveInequality can only be applied when suitable assumptions are
available (e.g., ComplexEstimate and Solve*-B). In case SolveInequal-
ity detects promising subformulas of assumptions, it interrupts (guided by
one of its control rules) such that Multi can apply UnwrapAss to unwrap the
promising subformula. Afterwards, SolveInequality can proceed and use the
new assumption.

The invocation of ComputeInstFromCS is delayed by a strategic control
rule until all goals are closed. This delay of the computation of instantiations
for meta-variables is sensible since the instantiations should not be computed
before all constraints are collected, i.e., only after all goals are closed. However,
if the current constraints already determine a meta-variable, then a further
delay of the corresponding instantiation is not necessary. Rather, immediate
instantiations of determined meta-variables can simplify a problem [13]. To
allow for the flexible instantiation of determined meta-variables SolveInequality
can interrupt and cooperate with the strategy InstIfDetermined.

9

Meier Melis

5 How Failure Reasoning Works (Examples)

There are default application and cooperation of strategies to accomplish ε-δ-
proofs (see previous section). In addition, since Multi does not pre-define an
order or combination of strategies, control rules can be added, which override
the default behavior and implement failure reasoning patterns.

5.1 Guiding the Introduction of Case-Splits

The Cont-If-Deriv problem is an example for an ε-δ-problem that needs the
introduction of a case-split. When tackling this problem, Multi starts as usual
for ε-δ-proofs. It decomposes the theorem with the strategy NormalizeGoal and
derives the inequality goals 0 < mvδ and |f(cx) − f(a)| < cε (where mvδ is
a new meta-variable and cx and cε are new constants) to which it applies
SolveInequality. SolveInequality passes the first goal with an application of the
method TellCS as constraint to CoSIE but fails to reduce the second goal.
Since in the initial assumption it detects |f(x1)−f(a)

x1−a
−f ′| < ε1 as a subformula,

which could be used, it interrupts. Multi applies the strategy UnwrapAss
whose application yields the new assumption

|f(mvx1)−f(a)

mvx1−a
− f ′| < mvε1

and the three new goals 0 < mvε1 , |mvx1−a| < cδ1 , and |mvx1−a| > 0 (where
mvx1 and mvε1 are new meta-variables and cδ1 is a new constant).

With the new assumption, the strategy SolveInequality closes the main
goal |f(cx)− f(a)| < cε in several steps. In between, SolveInequality interrupts
once and switches to InstIfDetermined, which introduces the binding mvx1→cx.
Then, it tackles the new goals from the application of UnwrapAss. It succeeds
to solve 0 < mvε1 and |mvx1 − a| < cδ1 but fails to solve |mvx1 − a| > 0, which
meanwhile became |cx − a| > 0 wrt. the introduced binding mvx1→cx. Thus,
in this situation, Multi can solve the main goal |f(cx) − f(a)| < cε with an
assumption that has some conditions. When Multi uses the assumption, then
it introduces the conditions as new goals. Later, it fails to prove one of these
conditions, |cx − a| > 0.

The meta-reasoning pattern Case-Split Introduction analyzes the failure and
suggests its “repair”. Technically, the pattern is realized in Multi by one
additional backtrack strategy and two control rules, one strategic control rule
and one control rule in SolveInequality, which guide suitable backtracking and
the introduction of the case-split. This works as follows: If SolveInequality
fails to prove a condition of an assumption that was used to prove the main
goal, then the strategic control rule triggers the additional backtrack strategy,
which deletes all actions following the introduction of the failing condition.

In our example, the application of UnwrapAss and all actions that depend
on it are backtracked such that |f(cx)−f(a)| < cε becomes a goal again. When
Multi re-invokes SolveInequality after this backtracking, then the control rule
in SolveInequality fires and suggests the application of the method CaseSplit

10

Meier Melis

for the failing condition and its negation. Afterwards, SolveInequality has to
prove |f(cx)− f(a)| < cε twice: once under hypothesis |cx − a| > 0 and once
under hypothesis ¬(|cx − a| > 0).

(Case 1)

[|cx − a| > 0]

|f(cx)− f(a)| < cε

(Case 2)

[¬(|cx − a| > 0)]

|f(cx)− f(a)| < cε

|f(cx)− f(a)| < cε
CaseSplit

For the first case it proceeds as described above. The failing condition
|cx − a| > 0 now follows from the hypothesis of the case. The second case is
solved differently by SolveInequality. First, it simplifies the hypothesis ¬(|cx−
a| > 0) to cx = a. Afterwards, it uses this equation to simplify the goal
|f(cx)− f(a)| < cε to 0 < cε, which follows from an introduced hypothesis.

Other ε-δ-problems also require this kind of failure reasoning (see sec-
tion 6). In other mathematical domains the same pattern occurs and leads to
a case-split introduction (see discussion of related work in section 7). Whereas
the failure reasoning pattern is domain independent, the actual case-split may
depend on the mathematical domain. Examples for possible domain depen-
dent case-splits are:

a > 0, a < 0, a = 0
n = 1, n > 1
x ∈ S, x 6∈ S

So far, however, we employ a general case-split into the cases cond and ¬cond
only.

5.2 Meta-Reasoning for Repair of Constraint Handling

The problem Lim-Div is an example problem for which backtracking is guided
by meta-reasoning on a highly desirable but blocked strategy. To the knowl-
edge of the authors this is a problem that has not been proved by any other
system. It states that the limit of the function 1

x
at point c is 1

c
:

∀ε (0 < ε ⇒ ∃δ (0 < δ ∧ ∀x (|x− c| < δ ∧ |x− c| > 0 ⇒ | 1
x
− 1

c
| < ε)))

The decomposition of the initial complex goal by NormalizeGoal results in the
two goals 0 < mvδ and | 1

cx
− 1

c
| < cε (where mvδ is a new meta-variable

and cx and cε are new constants). SolveInequality closes the first goal by an
application of TellCS whereas it simplifies the second goal to | c−cx

cx∗c | < cε. An
application of FactorialEstimate to this goal results in the three new goals
0 < mvf , |cx ∗ c| > mvf , and |c− cx| < mvf ∗ cε (with the new meta-variable
mvf). SolveInequality closes these three goals with TellCS. This results in

11

Meier Melis

the proof plan tree for | 1
cx
− 1

c
| < cε in figure 1, where [|cx − c| < mvδ] is an

assumption that is created during the application of NormalizeGoal but is not
used so far.

[|cx − c| < mvδ]

0 < mvf
TellCS |cx ∗ c| > mvf

TellCS |c− cx| < mvf ∗ cε
TellCS

| c−cx
cx∗c | < cε

Factor.Est.

| 1
cx
− 1

c | < cε
Simplify

Fig. 1. Initial proof plan tree for | 1
cx
− 1

c | < cε.

Now all goals are closed and in the default behavior CoSIE is supposed
to provide instantiations for the meta-variables mvδ and mvf . That is, the
strategy ComputeInstFromCS, which asks CoSIE to compute the instantia-
tions, becomes a highly desirable strategy. However, CoSIE fails to compute
instantiations here and ComputeInstFromCS does not succeed. What is the
problem? So far, CoSIE collected the constraints

|cx−c|
cε

< mvf , 0 < mvf , mvf < |cx ∗ c|, 0 < mvδ, 0 < c, and 0 < cε.

These constraints are consistent but a solution for mvf exists only, if
|cx−c|

cε
< |cx ∗ c| holds. This, however, does not follow from the collected

constraints. In particular, the constraints collected so far are not sufficient
for an ε-δ-proof since they do not establish a connection between cε and mvδ.
A possibility to overcome this problem is to refine the existing constraints in
order to obtain an extended set of refined constraints for which a solution
exists. That is, selected applications of TellCS (and only these selected ap-
plications) have to be backtracked in order to enable further refinement of
some constraints.

The meta-reasoning pattern Unblock Meta-Variable Instantiation analyzes the fail-
ure and suggests its “repair”. Technically, the pattern is realized in Multi by
the strategic control rule backtrack-to-unblock-cosie. When all goals are
closed, but the strategy ComputeInstFromCS is not applicable since the con-
straint solver fails to compute instantiations, then this control rule analyzes
the constraints passed by applications of TellCS. It triggers the backtracking
of actions of TellCS that pass inequalities to CoSIE that can be refined to
simpler inequalities by applications of methods such as ComplexEstimate. 6

Then, these simpler inequality goals are may passed to the constraint solver.

6 Currently, the critical constraints are chosen by heuristics encoded in backtrack-
to-unblock-cosie. It would be more convenient, if CoSIE would directly point out what
the critical constraints are. However, this kind of information is not provided by the CoSIE
system yet.

12

Meier Melis

In our example, backtrack-to-unblock-cosie triggers Multi to back-
track the application of TellCS that closes |c − cx| < mvf ∗ cε. Then,
SolveInequality applies the method ComplexEstimate to the re-opened goal.
This action uses the assumption |cx− c| < mvδ and reduces |c− cx| < mvf ∗ cε

to the new goals |0| < cε∗mvf

2
, mvδ ≤ cε∗mvf

2∗mv
, | − 1| ≤ mv, and 0 < mv (where

mv is a new meta-variable). Afterwards, TellCS passes the new inequality
goals to CoSIE . The resulting refined proof plan tree for |c − cx| < mvf ∗ cε

is given in figure 2.

[|cx − c| < mvδ] |0| <
cε∗mvf

2

TellCS
mvδ ≤

cε∗mvf
2∗mv

TellCS
| − 1| ≤ mv

TellCS
0 < mv

TellCS

|c − cx| < mvf ∗ cε
ComplexEst.

Fig. 2. Refined proof plan tree for |c− cx| < mvf ∗ cε.

Since CoSIE also fails on this extended constraint set the strategic control
rule backtrack-to-unblock-cosie guides the backtracking of the application
of TellCS that closes |cx ∗ c| > mvf . Again, SolveInequality reduces the re-
opened goal with ComplexEstimate. This action makes again use of the
assumption |cx − c| < mvδ and reduces |cx ∗ c| > mvf to the new goals
|c ∗ c| ≥ mvf ∗ 2, mvδ ≤ mvf

mv′
, |c| < mv′, and 0 < mv′ (where mv′ is a new

meta-variable). Afterwards, SolveInequality passes again the new inequality
goals to CoSIE by applications of TellCS. Figure 3 depicts the resulting
refined proof plan tree for |c− cx| < mvf ∗ cε.

[|cx − c| < mvδ] |c ∗ c| ≥ mvf ∗ 2
TellCS

mvδ ≤
mvf
mv′

TellCS
|c| < mv′

TellCS
0 < mv′

TellCS

|cx ∗ c| > mvf
ComplexEst.

Fig. 3. Refined proof plan tree for |cx ∗ c| > mvf .

This results (after some CoSIE-internal simplifications) in the following con-
straint store:

cε > 0 c > 0 mvf ≥ mv′ ∗mvδ mv′ > c

mvf > 0 mv > 1
cε∗mvf

2
> 0 mvδ > 0

mvδ ≤ cε∗mvf

2∗mv
mvf ∗ 2 ≤ c2

Now the following bindings consistent with these constraints can be computed:
mv→2, mv′→c + 1, mvf→ c2

2
, and mvδ→min(cε∗c2

8
, c2

2∗(c+1)
).

All ε-δ-problems in which subgoals with fractions occur need to repair
the constraint reasoning (see section 6). In other domains the same meta-
reasoning to overcome blocked instantiations of constraint solvers is applicable.

13

Meier Melis

5.3 Analyzing Meta-Variable Dependencies

As example for an ε-δ-problem that needs the analysis of meta-variable de-
pendencies consider the following problem:

lim
x→0

f(a ∗ x) = l follows from lim
x1→0

f(x1) = l and a > 0.

Unfolding of the occurrences of limit and normalization result in the goal
|f(a ∗ cx) − l| < cε. Unwrapping the initial assumption yields the new as-
sumption |f(mvx1)− l| < mvε1 , which can be used to close the goal. Thereby,
mvx1 is instantiated by a ∗ cx. The unwrapping of the initial assumption
also yields two goals, which become |a ∗ cx| > 0 and |a ∗ cx| < cδ1 wrt. the
instantiation mvx1 7→ a ∗ cx. These two goals can be closed with two assump-
tions from the normalization of the initial theorem: |cx| > 0 and |cx| < mvδ.
This works as follows: apply ComplexEstimate with the first assumption
to the first goal and pass the resulting inequality goals to CoSIE and ap-
ply ComplexEstimate with the second assumption to the second goal and
pass the resulting inequality goals to CoSIE . Figure 4 sketches the resulting
solution proof plan tree for the two goals |a ∗ cx| > 0 and |a ∗ cx| < cδ1 .

. . . [|cx| > 0]
|a ∗ cx| > 0 ComplexEst.

. . . [|cx| < mvδ]
|a ∗ cx| < cδ1

ComplexEst.

|a ∗ cx| > 0 ∧ |a ∗ cx| < cδ1

Fig. 4. Sketch of solution proof with ComplexEstimate.

Since the control rule prove-inequality suggests the method Solve*-B
before the method ComplexEstimate, Multi does not find this solution
directly. Rather, Multi applies Solve*-B to the first goal |a ∗ cx| > 0 wrt.
the second assumption |cx| < mvδ. This is possible since |cx| < mvδ equals
mvδ > |cx| and mvδ can be trivially unified with |a ∗ cx|. This results in the
instantiation mvδ 7→ |a ∗ cx| and the new goal |cx| > 0, which equals the
first assumption. Next, Multi tackles the second goal |a ∗ cx| < cδ1 but fails.
With the introduced instantiation of mvδ the assumption |cx| < mvδ becomes
|cx| < |a ∗ cx| and a solution of the goal |a ∗ cx| < cδ1 with this assumption
is not possible anymore. However, not the second goal is problematic in the
end, but the instantiation of mvδ introduced during the solution of the first
goal. Figure 5 depicts the failing proof plan tree for the two goals |a ∗ cx| > 0
and |a ∗ cx| < cδ1 .

The meta-reasoning pattern Analyze MV-Dependencies analyzes the failure and
suggests its “repair”. Technically, the pattern is realized in Multi by the
strategic control rule prefer-constraints-deletion, which guides the back-
tracking of steps that introduce instantiations or constraints for meta-variables
instead of the default backtracking. In this case, the strategic control rule an-
alyzes that the instantiation mvδ 7→ |a ∗ cx| is very unlikely to be part of
a solution of an ε-δ-problem since the meta-variable for δ is supposed to be

14

Meier Melis

[|cx| < mvδ]
[|cx| > 0]
|cx| > 0 Same

|a ∗ cx| > 0 Solve*-B

[|cx| < |a ∗ cx|]

|a ∗ cx| < cδ1
???

|a ∗ cx| > 0 ∧ |a ∗ cx| < cδ1

Fig. 5. Failing proof attempt with Solve*-B.

constrained during the proof planning process but not to be instantiated by
different means than CoSIE . Hence, the control rule guides the backtracking
of the Solve*-B step that closed the first goal. As result, Multi has to tackle
the first goal differently, which finally results in the solution of both goals
sketched above.

Note that the control rule prefer-constraints-deletion can also guide
the successive trial and error of meta-variable instantiations. When Multi

fails to solve a goal under a particular instantiation, then the instantiation
of the meta-variable has to be backtracked (in order to try the next in-
stantiation), rather than the goal for which Multi actually fails. The suit-
able backtracking is guided by prefer-constraints-deletion, which over-
writes the default backtracking in Multi in this case. A domain, where
prefer-constraints-deletion is used for such a trial and error of meta-
variable instantiations are residue class problems (see [12,9]).

6 Empirical Results

Although our contribution is fundamentally conceptual and architectural, we
had to show whether it is empirically relevant as well. Therefore, we tested the
benefit in two domains, the ε-δ-proofs from the analysis textbook [1] and the
residue class domain. Table 2 gives sample problems from the two domains and
the failure-reasoning they require. Moreover, we included in Table 2 inductive
proofs produced by the proof planner CLaM that also require failure reasoning.

ε-δ-proofs

The relevance of failure reasoning in this domain is not only demonstrated
by Table 2. Its figures alone are underestimating because many similar prob-
lems can be formulated. Moreover, the relative frequency of failure reasoning
is also important. Therefore, the fact that 22 out of 65 ε-δ-proofs constructed
by Multi from the systematically explored testbed [1] involve failure reasoning
evidences the crucial role of failure reasoning. In the appendix we give a com-
plete list of all ε-δ-proofs constructed by Multi that require failure reasoning.

Residue Class Problems

The residue class conjectures classify given residue class structures wrt.
their algebraic category. An example theorem is “the residue class structure

15

Meier Melis

Conjecture (i) (ii) (iii)

ε-δ-Proofs

lim
x→0

(f(a + x)− f(a)) = 0 ⇒ cont(f, a) x x

lim
x→a−

f(x) = l ∧ lim
x→a+

f(x) = l ⇒ lim
x→a

f(x) = l x

lim
x→a

f(x) = lf ∧ lim
x→a

g(x) = lg ∧ ∀x g(x) 6= 0 ⇒ lim
x→a

f(x)
g(x) = lf

lg
x

lim
x→∞

f(x) = l ⇒ lim
x→∞

f(x)
x = 0 x

lim
x→0

f(x) = l ∧ a > 0 ⇒ lim
x→0

f(a ∗ x) = l x

lim
x→a

f(x) = l ⇒ lim
x→0

f(x + a) = l x

Residue Class Problems

closed(ZZ3\{0̄3}, ∗̄) x

¬closed(ZZ3\{0̄3}, +̄) x

¬∃e:ZZ9 unit(ZZ9, −̄) x

¬inverses(ZZ6, ∗̄, 1̄6) x

¬divisors(ZZ6, ∗̄) x

¬commutative(ZZ8, −̄) x

¬distibutive(ZZ4, −̄, −̄) x

Inductive Proofs

∀x:item∀y, z:list x ∈ y ⇒ x ∈ concatenate(y, z) x

∀x:item∀y, z:list (x ∈ y ∨ x ∈ z) ⇒ x ∈ concatenate(y, z) x

∀x:item∀y:list x ∈ insert(x, y) x

∀y:list length(y) = length(isort(y)) x

∀x:item∀y:list x ∈ isort(y) ⇒ x ∈ y x

∀x:item∀y:list count(x, isort(y)) = count(x, y) x

Table 2
Sample proofs whose solution requires meta-reasoning about failures. The

numbered colons denote (i) case split introduction, (ii) unblock meta-variable
instantiation, (iii) analyze meta-variable dependencies. Note that x → a− and

x → a+ denote the left-hand limit and the right-hand limit.

(ZZ5, +̄) is associative”. Other problems from this domain concern the isomor-
phy of two algebraic structures. An example is “the residue class structures
(ZZ5, +̄) and (ZZ5, (x+̄y)+̄1̄5) are isomorphic”.

To tackle residue class problems we developed several techniques encoded

16

Meier Melis

in four different method-introduction strategies in Multi. In one of these
strategies, the TryAndError strategy (see [12]), the Analyze MV-Dependencies pat-
tern is crucial since Multi has to deal with nested existential quantifiers, which
result in ‘nested’ meta-variables shared by several goals. Hence, dependencies
among the meta-variables and the goals have to be analyzed.

We proved about 19.000 residue class conjectures with Multi. About half
of these theorems, in particular, theorems refutating a property, could be
proved with the TryAndError strategy only (see [12] for detailed description of
the experiments). Some representative examples occur in Table 2.

Inductive Proofs

So far, we did not apply Multi to inductive proofs. The inductive theorems
in Table 2 are taken from [8], which describes failure reasoning by so-called
critics in the proof planner CLaM. Since the critics employed in CLaM are a
special case bound to a particular method (see related work in section 7), our
general failure reasoning pattern for case-split introduction is applicable for
inductive proofs as well. For a more complete list of inductive proofs that
require failure reasoning see [8].

Discussion

Failure reasoning – as any control reasoning in Multi – can change the
search space traversed by Multi. The actual effect of the change can vary:
it can delete alternatives and prune the search space or it can introduce new
alternatives that extend the search space. The three failure reasoning patterns
described in this article all introduce some alternatives.

For instance, case-split introduction guided by failure reasoning introduces
the new alternative case-split where otherwise Multi would perform backtrack-
ing. Thus, it extends the potential search space and can produce “overhead”
as opposed to a run of Multi without the failure reasoning. Actually, this does
not happen for the ε-δ-proofs currently solvable by Multi 7 but it happens for
the (failing) application of Multi to non-theorems. As example non-theorem
consider lim

x→a−
f(x) = l ⇒ lim

x→a
f(x) = l, which is similar to the second problem

in Table 2. When guided by failure reasoning, Multi introduces for this non-
theorem a case-split similar to the case-split for the second problem in Table 2
(see [11] for details). This considerably extends the search space traversed by
Multi for the non-theorem.

Since the knowledge engineering for proof planning is pretty difficult, the
number of mathematical domains and problems successfully tackled by proof
planning so far is growing only slowly. However, if not quantitatively then at
least qualitatively, there is striking evidence for the need to meta-reason about
failures in mathematics since the identified meta-reasoning patterns rely upon

7 That is, for none of the ε-δ-proofs currently solvable by Multi without failure reasoning,
the search space traversed by Multi is extended by the failure reasoning.

17

Meier Melis

common techniques in mathematics. As evidence for this statement consider
that failure reasoning in the proof planner CLaM (see related work in section 7)
also exploits failures to guide the introduction of case-splits in a similar way
but in a completely different mathematical domain, i.e., proving theorems by
mathematical induction.

7 Conclusion and Related Work

We described three meta-reasoning patterns by which the multiple-strategy
proof planner Multi productively exploits failures to guide the subsequent
proof planning process. They represent heuristics suggesting how to handle a
failure that occurs in conjunction with a pattern of partially successful steps.
The meta-reasoning patterns do not only circumvent failures, they hold the
key to the construction of a solution proof plan.

The described failure reasoning and the repair modifications are possible
since Multi does not enforce a pre-defined systematic backtracking. Rather,
when a failure occurs, then strategic control rules in which our heuristics
are declaratively encoded can analyze the failure and can dynamically guide
promising refinements and modifications of the proof plan. All the meta-
reasoning patterns are generally applicable rather than over-specific as shown
in the experiments (see section 6). Further meta-reasoning that exploits the
flexible control in Multi is discussed in [9].

Related Work

Failure Reasoning in CLaM

Failure reasoning in the proof planner CLaM [15] is closely related to the
introduction of case-splits and lemmas in Multi. In [7] and [8], Ireland and
Bundy describe critics as a means to patch failed proof attempts in CLaM
by exploiting information on failures. The motivation for the introduction of
critics is similar to our motivation for failure reasoning: failures in the proof
planning process often hold the key to discover a solution proof plan.

Critics in CLaM extend the hierarchy of inference rules, tactics, and meth-
ods. A critic is associated with one method – mostly with the wave method –
and captures patchable exceptions to the application of this method. Critics
are expressed in terms of preconditions and patches. The preconditions an-
alyze the reasons why the method has failed to apply. The patch suggests a
change to the proof plan.

The situations that trigger case-split introduction and lemma speculation
in CLaM and Multi are very similar: unprovable premises of conditional facts
from the context trigger case-split introduction, whereas missing premises in
the current context trigger lemma speculation. However, the critics mech-
anism in CLaM and failure reasoning in Multi considerably differ not only
in minor technical issues but also in their conceptual design. Critics are

18

Meier Melis

a method-like entity directly bound to failing preconditions of a particular
method. Moreover, part of a critic is a patch of the failure, which is a special
procedure that changes the proof plan. In contrast, failure reasoning in Multi

is conducted by declarative and separate control rules. These control rules
are not associated with a particular method but rather test for particular sit-
uations that can occur during the proof planning process (independent of the
strategy or method that caused the situation). The control rules can reason
about the current proof plan and about other information such as the history.
The patch of a failure is not implemented into special procedures but is carried
out by methods and strategies whose application is suggested by the control
rules.

Dynamic Backtracking

Typically, backtracking methods return to prior points in the spanned
search tree and thereby often erase meaningful progress towards a solution.
As opposed thereto, Multi enables the backtracking of selected steps (and all
steps that explicitly depend on them). This can result in a new proof plan not
in the search tree traversed so far. In [6] Ginsberg describes a backtracking
approach for the solution of constraint satisfaction problems that is similar
to Multi’s. His approach also enables the deletion of selected steps without
removing all steps introduced after these steps (provided that these other steps
do not explicitly depend on the steps selected for deletion). He uses the term
“dynamic” backtracking because of the dynamic way in which the search is
structured.

Meta-Reasoning in Blackboard Systems

Related to the unblocking of desirable steps in Multi is the control rea-
soning in elaborate blackboard systems, e.g., see [4] and [5]. When a highly
desirable knowledge source is not applicable, then reasoning on the failure can
suggest the invocation of knowledge sources that unblock the desired knowl-
edge source.

References

[1] Bartle, R. and D. Sherbert, “Introduction to Real Analysis,” John Wiley& Sons,
New York, 1982.

[2] Bledsoe, W., Challenge Problems in Elementary Analysis, Journal of
Automated Reasoning 6 (1990), pp. 341–359.

[3] Bundy, A., The Use of Explicit Plans to Guide Inductive Proofs, in: Proceedings
of CADE–9, LNCS 310 (1988), pp. 111–120.

[4] Corkill, D., V. Lesser and E. Hudlicka, Unifying Data-Directed and Goal-
Directed Control, in: Proceedings of AAAI-82 (1982), pp. 143 – 147.

19

Meier Melis

[5] Durfee, E. and V. Lesser, Incremental Planning to Control a Blackboard-Based
Problem Solver, in: Proceedings of AAAI-86 (1986), pp. 58 – 64.

[6] Ginsberg, M., Dynamic Backtracking, Journal of Artificial Intelligence Research
1 (1993), pp. 25—46.

[7] Ireland, A., The Use of Planning Critics in Mechanizing Inductive Proofs, in:
Proceedings of LPAR’92, LNAI 624 (1992), pp. 178–189.

[8] Ireland, A. and A. Bundy, Productive Use of Failure in Inductive Proof, Journal
of Automated Reasoning 16 (1996), pp. 79–111.

[9] Meier, A., “Multi – Proof Planning with Multiple Strategies,” Ph.D. thesis,
Fachbereich Informatik, Universität des Saarlandes, Saarbrücken (2004).

[10] Meier, A., The Proof Planners of Ωmega: A Technical Description, Seki Report
SR-04-03, FR Informatik, Saarland University, Saarbrücken, Germany (2004).

[11] Meier, A. and E. Melis, Proof Planning Limit Problems with Multiple Strategies,
Seki Report SR-04-04, FR Informatik, Saarland University, Saarbrücken,
Germany (2004).

[12] Meier, A., M. Pollet and V. Sorge, Comparing Approaches to Explore the
Domain of Residue Classes, Journal of Symbolic Computation 34 (2002),
pp. 287–306.

[13] Melis, E. and A. Meier, Proof Planning with Multiple Strategies, in: Proceedings
CL-2000, LNAI 1861 (2000), pp. 644–659.

[14] Melis, E. and J. Siekmann, Knowledge-Based Proof Planning, Artificial
Intelligence 115 (1999), pp. 65–105.

[15] Richardson, J., A. Smaill and I. Green, System description: Proof planning
in higher-order logic with λClam, in: Proceedings of the 15th International
Conference on Automated Deduction (CADE–15), LNAI 1421 (1998), pp. 129–
133.

[16] Schoenfeld, A., “Mathematical Problem Solving,” Academic Press, New York,
1985.

[17] Siekmann, J., C. Benzmüller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler,
A. Franke, H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner,
I. Normann, M. Pollet, V. Sorge, C. Ullrich, C. Wirth and J. Zimmer, Proof
Development with OMEGA, in: Proceedings of CADE–18, number 2392 in LNAI
(2002), pp. 144–149.

[18] Zimmer, J. and E. Melis, Constraint solving for proof planning, Journal of
Automated Reasoning (2004), accepted.

20

Meier Melis

Appendix: ε-δ-Proofs Requiring Failure Reasoning

Case-Split Introduction:

(i) If function f has the limit f(a) at a, then f is continuous at a:
lim
x→a

f(x) = f(a) ⇒ cont(f, a).

(ii) (Cont-If-Deriv: Theorem 6.1.2 in [1])
If function f has a derivative at a, then f is continuous at a:
deriv(f, a) = f ′ ⇒ cont(f, a).

(iii) (Theorem 4.3.3, second part, in [1])
If function f has the left-hand limit l and the right-hand limit l at a,
then f has the limit l at a:
lim

x→a−
f(x) = l ∧ lim

x→a+
f(x) = l ⇒ lim

x→a
f(x) = l

(iv) If function f has the left-hand limit f(a) and the right-hand limit f(a)
at a, then f is continuous at a:
lim

x→a−
f(x) = f(a) ∧ lim

x→a+
f(x) = f(a) ⇒ cont(f, a)

(v) If function f has the left-hand limit ll and the right-hand limit lr at a,
then f is bounded in a neighborhood of a:
lim

x→a−
f(x) = ll ∧ lim

x→a+
f(x) = lr ⇒

(∃δ ∃M 0 < δ∧0 < M∧(∀x (|x1−a| > 0∧|x1−a| < δ1) ⇒ |f(x)| ≤ M))

(vi) If function f(a + x)− f(a) has limit 0 at 0, then f is continuous at a:
lim
x→0

(f(a + x)− f(a)) = 0 ⇒ cont(f, a)

Unblock Meta-Variable Instantiation:

(i) (Theorem 3.2.3.b in [1])
If sequence X = (xn) has the limit lx and sequence Y = (yn) has the
limit ly 6= 0 and yn 6= 0 for all n, then sequence X

Y
= (xn

yn
) has the limit

lx
ly

:

limseq X = lx ∧ limseq Y = ly ∧ ∀n yn 6= 0 ⇒ limseq X
Y

= lx
ly

(ii) (Example 4.1.7.d in [1])
The function f(x) = 1

x
has the limit 1

a
at a, if a > 0:

a > 0 ⇒ lim
x→a

1
x

= 1
a

(iii) (Example 4.1.7.e in [1])
lim
x→2

x3−4
x2+1

= 4
5

(iv) (Exercise 4.1.10.a in [1])
lim
x→2

1
1−x

= −1

(v) (Exercise 4.1.10.b in [1])
lim
x→1

x
1+x

= 1
2

21

Meier Melis

(vi) (Exercise 4.1.10.c in [1])
lim
x→0

x2

|x| = 0

(vii) (Exercise 4.1.10.d in [1])
lim
x→1

x2−x+1
x+1

= 1
2

(viii) (Theorem 4.2.4.b in [1])
If f has limit lf at a and g has limit lg 6= 0 at a and g(x) 6= 0 for all x,

then f
g

has limit
lf
lg

at a:

lim
x→a

f(x) = lf ∧ lim
x→a

g(x) = lg ∧ ∀x g(x) 6= 0 ⇒ lim
x→a

f(x)
g(x)

=
lf
lg

(ix) (Theorem 5.2.1.b in [1])
If f is continuous at a and g is continuous at a and g(x) 6= 0 for all x,
then f

g
is continuous at a:

cont(f, a) ∧ cont(g, a) ∧ ∀x g(x) 6= 0 ⇒ cont(f
g
, a)

(x) (Theorem 6.1.3.a in [1])
If f has the derivative f ′ at a, then a ∗ f has the derivative a ∗ f ′ at a:
deriv(f, a) = f ′ ⇒ deriv(a ∗ f, a) = a ∗ f ′

(xi) (Theorem 6.1.3.b in [1])
If f has the derivative f ′ at a and g has the derivative g′ at a, then f + g
has the derivative f ′ + g′ at a:
deriv(f, a) = f ′ ∧ deriv(g, a) = g′ ⇒ deriv(f + g, a) = f ′ + g′

(xii) (Theorem 6.1.3.c in [1])
If f has the derivative f ′ at a and g has the derivative g′ at a, then f ∗ g
has the derivative f ′ ∗ g(a) + f(a) ∗ g′ at a:
deriv(f, a) = f ′ ∧ deriv(g, a) = g′ ⇒ deriv(f ∗ g, a) = f ′ ∗ g(a)+ f(a) ∗ g′

(xiii) (Cont-If-Deriv: Theorem 6.1.2 in [1])
If f has a derivative at a, then f is continuous at a:
deriv(f, a) = f ′ ⇒ cont(f, a)

(xiv) If function f(x) has limit l as x →∞, then f(x)
x

has limit 0 as x →∞:

lim
x→∞

f(x) = l ⇒ lim
x→∞

f(x)
x

= 0

Analyse Meta-Variable Dependencies:

(i) (Exercise 4.1.12 in [1])
If f(x) has limit l at 0 and a > 0, then f(a ∗ x) has the limit l at 0:
lim
x→0

f(x) = l ∧ a > 0 ⇒ lim
x→0

f(a ∗ x) = l

(ii) (Exercise 4.1.3 first part in [1])
If the function f(x) has the limit l at a, then the function f(x + a) has
the limit l at 0:
lim
x→a

f(x) = l ⇒ lim
x→0

f(x + a) = l

(iii) If function f(a + x)− f(a) has limit 0 at 0, then f is continuous at a:
lim
x→0

(f(a + x)− f(a)) = 0 ⇒ cont(f, a)

22

	Introduction
	Proof Planning with Multiple Strategies
	Failure Reasoning
	Proof Planning --problems
	How Failure Reasoning Works (Examples)
	Guiding the Introduction of Case-Splits
	Meta-Reasoning for Repair of Constraint Handling
	Analyzing Meta-Variable Dependencies

	Empirical Results
	Conclusion and Related Work
	References

