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Abstract. Mathematical tools such as computer algebra systems and
interactive and automated theorem provers are complex systems and
can perform difficult computations. Typically, such tools are used by a
(small) group of particularly trained and skilled users to assist in math-
ematical problem solving. They can also be used as back-engines for
interactive exercises in learning environments. This, however, suggests
the adaptation of the choice of functionalities of the tool to the learner.
This paper addresses the adaptive usage of the proof planner Multi for
the learning environment ActiveMath. The proof planner is a back-
engine for interactive proof exercises. We identify different dimensions in
which the usage of such a service system can be adapted and investigate
the architecture realizing the adaptive access to Multi.

1 Motivation

So far, the main application of mathematical systems such as computer algebra
systems and theorem provers has been for assisting trained and skilled users. This
user group determines many design decisions. For instance, interactive theorem
proving systems try to support the proof construction by restricting choices to
valid proof steps, they suggest applicable lemmas, or they produce a subproof
automatically. These functionalities are useful, e.g., for interactively verifying a
program and reduce the workload of the proof expert.

Another application of a mathematical system may be as a cognitive tool
in a learning environment for which the user group consists of learners rather
than proof experts. Empirical evidence indicates that active, exploratory learn-
ing helps to construct knowledge and skills in a learner’s mind. In particular,
empirical studies [13] suggest that student’s deficiencies in their mathematical
competence with respect to understanding and generating proofs are connected
with the shortcoming of student’s self-guided explorative learning opportunities
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and the lack of (self-)explanations during problem solving. Such an explorative
learning can be supported by tools. For this reason, the web-based adaptive
learning environment for mathematics, ActiveMath, integrates problem solv-
ing systems as back-engines for interactive exercising.

In an educational context the original features of typical mathematical sys-
tems are not sufficient. Rather, an educational context requires additional fea-
tures for effective learning such as

– adaptivity to the learner,

– feedback on the learners activities,

– possibility to make mistakes.

In order to realize those features and to adapt to the student’s context, goals,
needs, capabilities, preferences, and previous activities, the setting and the user
interface of tool-supported interactive exercising needs to be adaptable to the
learner in a pedagogically and cognitively sound way. Thus, for interactive ex-
ercising the back-engine has to be extended so that it can process information
from ActiveMath’s student model and pedagogical knowledge base. Similarly,
information about the learner’s misconceptions or performance in an exercise
should be returned to the student model.

In this paper, we describe a first adaptive integration of the proof planner
Multi with the learning environment ActiveMath. In particular, we discuss
the different dimensions along which the usage of the proof planner Multi can
be adapted. Mostly, we describe personalization dimensions although the same
setting can also be used for adaptation of accessibility and customization. We
investigate the necessary extensions of Multi and the architecture realizing the
adaptive access to Multi.

The paper is structured as follows. We start with preliminaries about Ac-
tiveMath and the proof planner Multi, since these might not be known to
the gentle reader. Afterwards, we identify adaptivity dimensions of Multi for
interactive proof exercises and present the architecture for the adaptive access of
Multi. In section 5 we describe the realization of some directions of the adaptiv-
ity. Section 6 discusses potential extensions of the current approach and future
work. We conclude with a discussion of results and related work.

2 Preliminaries

Empirical results indicate that instruction with proof planning methods, which
explicitly encode mathematical steps, can be a learning approach that is superior
to the traditional teaching of mathematical proof [7]. This motivates to use proof
planning for maths education and the connection of the proof planner Multi
with the user-adaptive learning environment ActiveMath.

The following is only a brief introduction to ActiveMath and Multi. For
more details on proof planning and Multi the interested reader is referred to [9,
8]. For more details on ActiveMath see [6].



2.1 ActiveMath, its Student Model and Pedagogical Knowledge

ActiveMath is a web-based, user-adaptive learning environment for mathemat-
ics. The learner can choose learning goals to achieve a scenario. ActiveMath
generates learning material user-adaptively, i.e., dependent on the learner’s goals,
learning scenarios, preferences, and knowledge. A course generator determines
the concepts that the student needs to learn for a goal chosen by the learner and
selects the appropriate instructional items (explanations, definitions, examples,
exercises, etc). According to pedagogical knowledge, this selection also includes
the number, type, and difficulty of exercises and examples, as well as the in-
teractivity setting of exercises (e.g., what is requested from the learner, which
functionalities can be used). It assembles the instructional items in a sequence
which is suggested by the scenario chosen and the pedagogical strategy following
it. The adaptivity is based on a student model that includes

– the student’s mastery level of concepts and skills
– the history of the learner’s actions (e.g., time spent per item)
– her preferences (e.g., preferred language), the chosen learning scenario, and

the learning goals as input through a questionnaire.

The student model is updated based on results of the learning activities such
as reading and problem solving. That is, the student’s exercise performance is
evaluated and the evaluation is passed to the student model for updating it.

2.2 Proof Planning

Originally, the goal of the research on proof planning [2] was to prove mathemat-
ical theorems automatically. The knowledge-based approach in Multi employs
mathematical strategies, methods, and computations for this purpose. It guides
the search by heuristics known from mathematical problem solving in specific
mathematical areas.

Proof planning starts with a goal that represents the conjecture to be proved
and with proof assumptions. It continues by applying a method (such as proof by
induction) for which the application conditions are satisfied and this generates
new assumptions or reduces a goal to (possibly trivial) subgoals. This process
goes on until no goal is left. The resulting sequence of instantiated methods
constitutes a solution proof plan.

Generally, proof construction may require to construct a mathematical ob-
ject, i.e., to instantiate existentially quantified variables by witness terms. In
proof planning meta-variables are used as place holders for such objects un-
til enough information is collected to instantiate the meta-variable. A domain-
specific constraint solver can help to construct mathematical objects that are
elements of a specific domain. During the proof planning process the constraint
solver checks the (in)consistency of constraints on meta-variables and collects
consistent constraints in a constraint store. Then, it computes instantiations for
the meta-variables that satisfy the collected constraints [10].



To structure the repertoire of proof planning methods and make the proof
planning process more hierarchical, strategies have been introduced. One of the
types of proof planning strategies is specified by a set of methods and search
heuristics. Different proof planning strategies can correspond to and implement
different proof ideas. In the automatic mode, the proof planner searches for ap-
plicable strategies (including object construction and backtracking) or methods
in each intermediate state until it reaches a solution proof plan. Mathematics-
oriented heuristics guide this search.

For new applications, Multi has been extended with an interactive mode.
In interactive proof planning, the user searches and makes the decisions, which
can include the choice of strategies, of methods, and the instantiation of meta-
variables.

3 Adaptation to the User

The proof planning service can be requested for proof examples that are (dynam-
ically) demonstrated and for interactive exercises in which Multi can be used
as a back-engine. In these applications, the Multi service can be adapted ac-
cording to the learning scenario, the goals, the preferences, and the prerequisite
knowledge of the learner. In the following, we shall discuss several adaptation
dimensions together with cognitive and other variables of the learner that may
affect the adaptation.

3.1 Proof Planning Scenarios

The first dimension of adaptation of the Multi service is the exercise scenario.
There are several types of proof exercises, e.g., those in which the student can
interactively apply certain proof planning methods, freely explore, or in which
the learner sketches proof steps and Multi checks the student’s steps. Accord-
ingly, we identified several pedagogically motivated proof scenarios. They differ
with respect to the overall learning goal and the employed service functionalities.
The selection of a scenario is performed by ActiveMath, which requests the
Multi service.

Replay and presentation of a proof plan Completed proof plans (or parts
of proof plans) are presented to the learner. The proof plan can be presented
at once or stepwise. This scenario targets an understanding of the effects
of the application of individual methods, how several method applications
combine to a proof plan or provide a basis for self-explaining a proof. The
learner’s activities in this scenario are mainly restricted to browsing the
presentation of the proof plan, of methods and of the constraint store as well
as replaying a proof plan step-by-step or hierarchically.

Interactive proof planning The learner constructs a proof plan for a given
problem or has to complete a given proof plan with gaps by selecting and
applying methods from a pre-defined set of methods or strategies as well as



by instantiating meta-variables. This scenario targets the ‘technical’ mastery
of proof steps and proof heuristics. Moreover, the learner can realize the
effects of instantiating a meta-variable and receive support for constructing
mathematical objects that instantiate a meta-variable. As we shall see later
(see section 5), the learner’s main activities are the selection of the next
step (and its details) as well as the specification of meta-variables. Other
possibilities are browsing the current proof plan and requesting additional
information, e.g., from the constraint store.

Island planning The learner constructs a proof sketch for a problem. This
scenario targets the understanding of the proof process without details. The
student is supposed to find a proof idea and to provide a structure of the
proof by specifying important intermediate goals in a proof plan, so-called
proof islands. The main user interactions in this scenario are adding proof
islands as well as links between the islands, the theorem and the assumptions
that describe which proof nodes depend from which other proof nodes. In
addition, the current island plan can be browsed and additional information
can be requested.

Free exploration The learner obtains full access to the proof planner. She
has to state the problem and initiate the proof process. Moreover, she can
freely access different kinds of proof manipulations (application of strategies,
of methods, of tools, instantiation of meta-variables). This scenario is only
sensible for advanced learners. It targets exploration and discovery learning.

Meta-Cognitive Framework Polya suggested a framework for teaching mathe-
matical problem [11]. He formulates a set of heuristics cast in form of brief
questions and prompts within a frame of four problem solving stages: (1) Un-
derstand the problem (2) Devise a plan (3) Carry out the plan (4) Look back
at the solution. Questions and prompts for (2) are, for instance: do you know a
related problem? did you use all the data? Following Polya’s ideas, each of the
above scenarios can be enriched with meta-cognitive scaffolding in form of con-
text sensitive subtitles, questions and prompts. This targets a structured proof
process with separated phases.

3.2 Other Adaptation Dimensions

Other important adaptation dimensions control the possible or preferred prob-
lem solving strategies, the range of method choices, domains from which
mathematical objects can be drawn etc. For instance, an exercise about the
limit of a sequence can be solved by the application of limit theorems proved
before or by using only the definition of the limit. The choice of such a proof
idea depends on the learner’s capabilities and on the pedagogical strategy.

In the interactive proof planning scenario Multi provides suggestions of
method applications and meta-variable instantiations to the learner (see sec-
tion 5). In this scenario an adaptation decision is whether all the suggestions
have to be correct or not. This is important, since errors can be an important
source of learning. As opposed to a learning context faulty suggestions are



not appropriate for problem solving assistance. For learning, however, it might
not be the best idea to make only correct suggestions because then the student
might just click on any suggestion rather than learn anything.

For instance, when the student has to prove the limit of a sequence by apply-
ing theorems and she is already familiar with the theorems, then it may be too
boring and not interesting to suggest only applicable theorems. Again, the deci-
sion on when to make which faulty suggestion depends on the student’s situation
and on her capabilities and on the pedagogical strategy.

Further dimensions for adaptation are the user interface appearance and
the feedback.

Note that, so far, we focused on the realization of the adaptive application of
the interactive proof planning scenario. A description of the adaptivity realized
so far is given in section 5. An adaptive graphical user interface and adaptive
feedback delivery are not realized so far.

3.3 Some Variables to Adapt to

Adaptation may depend on the learner’s expertise. For instance, a student who
is a novice in proving will have more difficulties to choose between many methods
and therefore a large set of alternative methods to choose from should be avoided
because it increases the likelihood of guessing instead of learning and reasoning.

Adaptation may also depend on the learner’s activity history. For instance, it
seems not to be advisable to make suggestions for a method, in case the student
has not been able to apply that method for several times recently.

Many dimensions of adaptation do not only depend on the learner’s aptitudes
but also on the chosen pedagogical strategy. For instance, the decision when to
allow for faulty suggestions will depend not only on the student’s situation and
on her capabilities but also on the pedagogical strategy.

4 Architecture

For all those adaptations of the proof planning service the actual proof planner
has to be extended by a scenario management and by mediators as described
below. That is, the service encapsulates mediators which provide a (Web-) com-
munication interface and compute some of the adaptations. The communication
relies on XML-RPC protocols1 and the Omdoc language [3] and is not further
considered here.

Figure 1 depicts the architecture of the proof planning service and its com-
munication with the learning environment ActiveMath including its student
model and pedagogical knowledge.

The architecture separates different functionalities and different kinds of
knowledge. This modularization helps to maintain and update modules and to
re-use components. As a side effect, the GUI becomes more independent and

1 http://www.xmlrpc.com
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Fig. 1. The architecture of the Multi service and its communication with Active-
Math and the GUI

adaptable. This part of the architecture (i.e., GUI and GUI-mediator) is, how-
ever, not yet implemented.

Scenario-Manager. The Scenario-Manager provides a communication shell
around Multi and realizes the different proof scenarios, which use particular
proof storage and proof manipulation functionalities of the proof planner. The
scenario for interactive proof planning employs – among others – the following
functionalities:

– compute method application and meta-variable instantiation suggestions for
the learner,

– check whether method applications and meta-variable instantiations issued
by the learner are applicable,

– apply applicable steps,
– check whether proof planner can automatically complete the current proof

plan,
– analyze the differences between the current proof plan fragment and a solu-

tion proof plan completed by the proof planner.

Relevant for island planning are, in particular, the functionalities:



– apply the island nodes and links specified by the user as abstract steps in
the proof plan under construction,

– try to verify islands with automated proof planning or other tool support
available in Multi (e.g., with integrated computer algebra systems or auto-
mated theorem provers).

The Exercise Composer and the Evaluator provide interfaces for the commu-
nication between ActiveMath and the Scenario-Manager.

Exercise Composer. When ActiveMath requests a proof planning session, then
the Exercise Composer computes the input for the parameters of the Scenario-
Manager and the scenario. For instance, when the interactive proof planning
scenario is requested, then the Exercise Composer determines the range and
restriction of suggestions that the scenario component computes and provides
to the learner. The Exercise Composer uses student model information for this
computation.

Evaluator. At the end of an exercise the Evaluator receives an account on how
complete and sound the learner solved the exercise. From this account the Eval-
uator computes information, which summarizes the learner’s actions. The Eval-
uator passes this information to the persistent student model of ActiveMath.

GUI. The GUI is an independent component. It will be an applet or even a
standalone GUI (not integrated into ActiveMath).

GUI-Mediator. The GUI-mediator is needed to adapt the presentation and feed-
back to the learner’s needs and to configure the GUI. The GUI-Mediator realizes
the communication between the GUI and the other components of the proof
planning service. For each scenario, it interprets the meaning of GUI-objects
and their manipulation and passes the interpretation of manipulations to the
components of the proof planning service. Vice versa it translates information
from the components to the GUI. This is an adaptive translation depending on
information from the student model. Its main functionalities are:

– invoke and configure the GUI for a scenario and the individual learner. Adapt
the GUI to user characteristics such as preferred language and to the pecu-
liarities of the different scenarios (different scenarios require different user
activities and different GUI-objects).

– interpret user interactions with the GUI and pass interpreted information to
the Scenario-Manager. For instance, moving a goal-object and connecting it
to assumption-objects in the GUI.

– request information/services from ActiveMath, e.g., the explanation of a
method or of a definition, as well as from the proof planner, e.g., the current
constraint collection, and pass the results to the GUI. This is important, since
the learner should be able to actively request different kinds of supporting
information.



– interpret proof plan changes, feedback and messages from the proof planner
components and pass them to the GUI for display. This includes the change
of the proof state as well as proof planning-related messages. For instance,
if a method is not applicable because its application conditions are not true,
then this feedback can be displayed appropriately because it might help
a learner to correct her choice of a method or its details. Since the proof
planner generates feedback in a technical format the learner is not supposed
to understand, the GUI-Mediator has to interpret and filter this information
to provide the learner with useful, comprehensible and possibly adaptive
feedback.

5 Adaptive Suggestions of the Glass-Box Service Multi

The functionalities of black-box services, such as computer algebra systems, are
mostly restricted to their original purpose and only few of them can be employed
for means of adaptation. For instance, the computer algebra system Maple [12]
can be called with assumptions for all following computations (e.g., a > 0) or
certain functions can be excluded from the interaction. The restrictions may not
be principled in nature and extensions similar to those described above may
accommodate more adaptivity.

Compared with black-box systems the adaptive usage of glass-box systems
such as Multi can be handled more easily. The simple reason is that we have
more control over the functions of the glass-box and the extended architecture
allows for adaptations. In what follows, we describe some directions of the adap-
tivity for the interactive proof plan scenario in more detail.

Adapting the Configuration
The list of all parameters of a scenario is called a configuration. A configu-

ration for interactive proof planning comprises

– a proof planning strategy,
– a set of suggestion agents,
– the level of automation.

The interactive proof planner comprises an agent-based mechanism for sug-
gesting commands, which specify a method and the arguments necessary for its
application to the current proof (see [4] for a detailed description). The set of
suggestion agents controls the level of freedom in the interaction with the proof
planner. It can be more or less restricted, more or less guided, and it can encode
tutorial strategies such as the deliberate introduction of faulty suggestions for
learning from failure.

The Exercise Composer computes an initial set of agents from the specifi-
cations of methods to be considered for the exercise problem. For instance, one
set of agents suggests only applicable methods with all parameters instantiated.
Another set of agents suggests only a partially specified method application,
which has to be completed by the student.



If the author of an ActiveMath exercise wants to have a particular sugges-
tion, e.g., a suggestion that corresponds to a typical error, then special agents
can be added. The Exercise Composer evaluates these additional agents and
combines them with the automatically generated ones.

Two other parameters of the interactive proof planning scenario that are
determined by the Exercise Composer are ‘strategy’ and ‘level of automation’.
Proof planning strategies can implement different ideas for proving. That is,
different strategies tackle a proof planning problem in a different way. If the
Exercise Composer selects a strategy for the problem at hand, then it computes
at least one agent for each method of the strategy. Some of the methods are
pretty irrelevant for learning and therefore are applied automatically. The set of
all those methods is called the level of automation.

Selection of a Strategy
A (proof) problem may be solvable by different (proof planning) strategies

that represent different ideas of how to solve the problem. For instance, the
general problem of classifying a residue class structure according to its algebraic
properties (associativity, the existence of inverse elements, and isomorphy of
residue classes) can be tackled by three different strategies (see [5]): the first
strategy tries to solve the problem by applying known theorems, the second
strategy reduces a residue class problem to a set of equations, which have to
be solved, the third strategy introduces a case split over the (finitely many)
elements of the residue class structure.

The Exercise Composer chooses a strategy depending on the concrete prob-
lem and on the knowledge of a learner (whether she knows the theorems that
are the prerequisites of the first strategy, whether she knows the methods em-
ployed by a strategy) and her performance in previous exercises (e.g., when the
other strategies have been trained already). Such configuration heuristics can be
encoded by pedagogical rules. For instance

IF studentKnowledge(prerequisites (firstStrategy)) > medium

AND studentKnowledge(firstStrategy) < medium

THEN present exercise-for(firstStrategy)

IF studentKnowledge(firstStrategy) > medium

AND studentKnowledge(secondStrategy) > medium

AND studentKnowledge(thirdStrategy) < medium

THEN present exercise-for(thirdStrategy)

Selection of Agents
If the goal is to most rapidly prove a conjecture and deep learning is unim-

portant, then the Exercise Composer generates agents for the configuration that
check for applicability and provide only fully-specified, applicable suggestions.
However, this is not a typical goal in learning to prove. Rather, learning involves
to understand why a method is applicable, what a particular method is actually



doing, and for which purpose it is applied. Such competencies may be better
trained when input is requested from the student (rather than clicking only) or
while making mistakes, discover, and correct them.

One method may correspond to several agents that differ in how specific their
suggestions are, i.e., how much input is left to the student. For instance, an agent
for a method, which has as arguments a goal and premises, can have suggesting
agents for the premises or leave the selection of premises to the learner.

Depending on the student model and the learning goal of an exercise, the Ex-
ercise Composer chooses agents for a method that compute more or less complete
suggestions. For instance, a novice learner would start with much support and
fully-specified suggestions. For a more experienced learner, under-specification
can force the learner to specify more input herself in order to discover and over-
come misconceptions in the application of a method.

An author-specified agent may request further arguments. For instance, one
method for residue class proofs uses a computer algebra system to simplify a
modulo-equation. An agent added by the author requests from the student to
input the resulting term in advance. During interactive proof planning this input
is compared with the actual result of the computer algebra system computation.
The idea behind such an agent is to stimulate the anticipatory reasoning of the
learner.

Level of Automation
The automation of the application of certain methods avoids bothering the

learner with the specification of proof steps, which she already knows. Meth-
ods that decompose logical quantifiers and connectives are typical examples for
automated methods. Moreover, methods that perform some normalization or
re-writing of assumptions and goals can be applied automatically, in case the
learner is diagnosed to understand the outcome of these methods.

6 Future Work

6.1 Extensions of the Architecture

The architecture in Fig. 1 (see section 4) enables a “one-shot” adaptive invo-
cation of the Multi service. That is, when the Multi service is requested, the
architecture enables the selection of a scenario and a configuration depending on
the information in ActiveMath. During exercising, the configuration may turn
out to be inappropriate for the student. For instance, gaps or faulty suggestions
may be to difficult for the student.

In order to allow for adaptation during an interactive exercise we are cur-
rently developing and integrating a local student model as well as diagnosis and
feedback components into the architecture in Fig. 1.

Local Student Model. The local student model contains information about the
user’s actions during the proof session and mastery information relevant in that



session. The local student model is maintained during the proof session only.
It is initiated by the Exercise Composer with information from ActiveMath’s
persistent student model. When a proof session terminates, the Evaluator inter-
prets the information in the local student model and passes update information
to ActiveMath’ persistent student model. The GUI-Mediator creates entries
in the local learner history.

Diagnose Component. With the help of Multi the diagnosis component analyzes
the interactions of the learner as well as the proof progress during a session. It
may use information in the local student model as well as information on the
current proof state provided by the Scenario-Manager. The diagnosis component
can change the local student model.

Feedback Component. The feedback component uses the diagnosed and collected
information in order to compute reactions. This comprises verbal feedback for
the user (via the GUI-Mediator), new suggestions, or the modification of the
configuration, i.e., the scenario setting, during an exercise.

6.2 Deliver what the Learner Needs

Crucial for the application of Multi for learning is a user-friendly GUI. This
adaptive GUI has to hide technical details of the underlying proof engine. A first
GUI will be specified based on the outcomes of Human Computer Interaction
experiments with different groups of learners. Some features we identified already
as crucial are a MathML-like quality of formula rendering, access of subformulas
by mouse click, subformula drag&drop, and an input editor.

Beyond the mere presentation in a GUI, for many functionalities in Multi
(that can provide important information for an expert) we will have to exam-
ine by experiments whether and to which extend they are usable by particular
groups of learners. As an example, consider the collection of constraints during
the planning process in a constraint store and the application of a constraint
solver. The constraint solver provides valuable information for proof planning
such as detection of inconsistencies to guide the proof planning and construction
of instantiations of meta-variables. For the usage of this information for learning
we have to examine questions such as:

– for which learners is the provision of constraints suitable?
– in which form should constraints be shown to particular groups of learners?

– how should/can the consequences of actions to the constraint stores be
demonstrated to learners? (e.g., the consequences of an instantiation of a
meta-variable by the learner)

– which learners can deal with information such as that their current goal is
inconsistent with some collected constraints?

– how should such information be provided to particular groups of learners?
– . . .



7 Conclusion and Related Work

We described the architecture for the integration of a cognitive tool in a learning
environment. For such a tool to be used for learning, additional components or
features may have to be created rather than just a communication wrapper for
Web-communication and brokerage.

We have shown how adaptivity can be introduced for a proof planning service
in order to adapt to the context and the needs of the learner. The adaptivity is
realized by extensions of Multi as well as by the architecture that uses mediators
that evaluate student model and context information to provide adaptive access
to Multi and to a GUI. The architecture emphasizes the separation of different
functionalities by different components.

The concrete extensions of Multi are tool-specific. However, such extensions
can be developed for other glass-box systems as well.

For intelligent tutoring further components are necessary. In particular, we
are currently designing a local student model and diagnosis and feedback compo-
nents. Moreover, we started experiments to empirically test which functionalities
of proof planning are suited for particular groups of learners and how to provide
the functionalities to the learner in a usable way.

Related Work
Aspinall describes in [1] the Proof General Kit, which provides a general ar-

chitecture for the integration of proof assistants with so-called display engines.
The architecture consists of a collection of communicating components centered
around the Proof General Mediator, which interfaces all the components and
handles the communication between the components. This approach clearly sep-
arates the GUI from the proof machinery and enables the integration of different
proof assistents into a uniform framework with uniform presentations in different
user interfaces. In our architecture, the mediators (the Exercise Composer and
the GUI-Mediator) focus on the realization of adaptations.
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